




氯化铵高氨氮废水处理的工艺介绍
氯化铵高氨氮废水处理的工艺介绍 氯化铵废水脱氨处理是利用塔内高温使含氨氮水沸腾下脱氨,氨蒸汽用冷凝器冷凝,回收稀氨水,控制回流比来达到所需氨水浓度。 采用自清洁机构,防止水中氯化钙等析出结垢;回收装置分两处,一处回收氨水、一处利用物料吸收 工艺优势 ·降低能耗:能耗大大降低,蒸汽耗量少(70-90kg/吨水)。同比可节省蒸汽50-90Kg/吨水。 ·脱氨效益高:采用专用塔板,负压下氨氮更宜挥发,氨氮去除率高可达到≥99.99% ·运行成本低:采用石灰调节pH,大大降低运行成本,减少了液碱的消耗,同时避免增加水体中盐浓度。 技术优势 ·采用两级加石灰装置,既能充分利用石灰乳,减少沉渣中的石灰残留,又能减轻沉渣中的氨味,既能保证环保的达标,又能提供良好的生产环境。 ·采用防垢自清洁装置,利用机械刮洗作用,防止沉淀析出的聚集堵塞,保证脱氨塔的正常运行,采用防垢自清洁装置脱氨塔的运行周期是常规脱氨塔的3倍。

MAP沉淀法主要是利用以下化学反应
MAP沉淀法 主要是利用以下化学反应:Mg2 NH4 PO43-=MgNH4PO4 理论上讲以适宜比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 ][NH4 ][PO43-]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。

同步硝化当硝化与反硝化
同步硝化反硝化
当硝化与反硝化在同一个反应器中同事进行时,称为同时消化反硝化(SND)。废水中的溶解氧受扩散速度限制在微生物絮体或者生物膜上的微环境区域产生溶解氧梯度,使微生物絮体或生物膜的外表面溶解氧梯度,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,产生缺氧区,反硝化菌占优势,从而形成同时消化反硝化过程。影响同时消化反硝化的因素有PH值、温度、碱度、有机碳源、溶解氧及污泥龄等。

版权所有©2025 产品网