转子叶片的振动特性将直接影响发动机性能及发动机的可靠性和寿命。为正确评估发动机的的可靠性和寿命,需要进行动频、动应力测量试验分析转子叶片的动频、动应力。转子叶片工作环境恶劣:高转速(12000 转/分)、大交变应力(频率:8000Hz,应力水平:400MPa),给数据采集和分析提出了很高的要求,LMS-SCADSⅢ316 硬件和测量软件Signature Testing 解决了问题。对电厂运行机组而言,由于叶片安装条件和连接条件在运行过程中可能发生变化,因此确切地了解这些变化对叶片振动特性的影响对保证机组的安全运行有重要意义。为准确测量叶片在高频振动下的应力,为设计提供可靠性数据有着重要意义。
叶片是航空发动机的主要零件之一,其结构强度直接影响到发动机的工作效率和运行可靠性。叶片的工作环境比较恶劣,除了承受高速旋转的气动力、离心力和振动负荷外,还要受到热应力的作用,很容易发生故障。以航空发动机为例,据统计振动故障率占发动机中总故障率的60%以上,而叶片振动故障率又占振动故障率的70%以上。因此,有必要在叶片的设计过程中建立合适的有限元模型并进行振动固有特性分析和响应分析。本文针对叶片固有特性和振动响应的分析方法进行研究。叶片振动测量系统(BVMS)用于非接触式高速旋转叶片振动、应变、裂纹等在线状态检测。首先对叶片固有特性分析方法和振动响应分析方法进行了综合性评述。
利用有限元方法分析了某径流式涡轮增压器叶片的振动特性,得出了叶片的各阶自振频率及相应振型,计算结果与实验结果较为吻合。分别对压气机和涡轮叶片进行了共振特性分析,在此基础上进行了压气机和涡轮叶片的共振相干分析,得出了在该增压器设定工作转速下,叶片发生共振的概率,并评估了叶片的工作可靠性。Δt太小,会使x(nΔt)的数目剧增,增加了数据处理的工作量,并要求计算机的容量要大。
我国沿岸很多地方风能资源丰富, 风能发展潜力巨大,具备很好的开发前景,通过在这些地点建立风电机组可以充分利用这些能源,创造巨大的经济价值。风电机组控制系统是整个发电机组的核心,直接影响着整个发电系统的性能。由于风电机组叶片受到阵风推力产生的轴向方向上的载荷巨大,风速的微小变化就会引起轴向力较大的变化。2Hz以上,对比位移、速度和加速度,其中加速度信号幅值较大,表明可以充分利用加速度信号作为测量和处理对象。
在风力发电机运行过程中,其相关振动信号能够有效反映设备部件运行状况, 并承载着设备故障信息。为此,利用相应技术对风机振动信号进行有效检测和分析, 将其数据作为设备健康状况的判断依据,就能实现风机叶片故障的有效预测。风机叶片工作中的振动频率一般在0.2Hz 以上,对比位移、速度和加速度,其中加速度信号幅值较大,表明可以充分利用加速度信号作为测量和处理对象。整体叶轮叶片振动疲劳试验装置及试验方法本发明公开了一种整体叶轮叶片振动疲劳试验装置及试验方法,该试验装置包括振动试验台及整体叶轮,整体叶轮经夹具轴向压紧并固定在振动试验台上。
利用加速度传感器对风机叶片加速度值进行测量,可有效掌握风机叶片的振动程度。其原理如下:首先,对加速度进行积分处理,获得速度信号v,从而掌握风机叶片振动频率;设计了基于固定频率脉冲填充法计数的高速脉冲信号采集及预处理电路,实现定时时间测量。其次,对速度信号进行再积分,掌握风机叶片的振动位移s, 进而对风机叶片振动幅度进行有效掌握;获取三轴的加速度情况,并对振动位移分量进行合成以获取加速度矢量,通过已有信息得出叶片振动大小和方向,进而判断风机是否存在故障。
版权所有©2025 产品网