RTMS采用光纤传感器实现非接触扭转振动测量,硬件上采用叶片振动测量系统,相较于传统光电编码、齿轮脉冲等传统方法具有以下优势:
1.光纤非接触式测量,无需测量改装,无需动平衡;
2.传感器工作距离宽,动态响应快,对横向振动不敏感,满足轴系振动的实际工况要求。
3.双传感器差分扭转测量算法,***了传统方法中转速不稳导致的测量误差。
RTMS尤其适用于大直径旋转轴传递功率、静扭矩、动扭矩及扭振的高精度在线监测。
扭振处理可采用时域或频域方法进行,时域法得到的***终结果为扭转角随时间变化曲线,频域方法是进行频率分析或瀑布图分析,可提取不同阶次或频率下的扭转角大小。另外,还可以对两个测量截面进行相对扭转角分析。我们测量得到的信号是转速随时间变化的时域波形,该信号实际上是旋转部件的角速度随时间变化的曲线,因此,为了得到转角变化曲线,不管是时域还是频域处理方法,都需要对该信号进行一次积分。
RTMS采用光纤传感器实现非接触扭转振动测量,硬件上采用叶片振动测量系统,相较于传统光电编码、齿轮脉冲等传统方法具有以下优势:
1.光纤非接触式测量,无需测量改装,无需动平衡;
2.传感器工作距离宽,动态响应快,对横向振动不敏感,满足轴系振动的实际工况要求。
3.双传感器差分扭转测量算法,***了传统方法中转速不稳导致的测量误差。
RTMS尤其适用于大直径旋转轴传递功率、静扭矩、动扭矩及扭振的高精度在线监测。
在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的前端是传感器,它是整个测试系统的***,被世界各国列为***技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。
工程振动测试方法
在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。
1. 机械式测量方法
将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。但在现场测试时较为简单方便。
2. 光学式测量方法
将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。如读数显微镜和激光测振仪等。
3. 电测方法
将工程振动的参量转换成电信号,经电子线路放大后显示和记录。电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。这是目前应用得***广泛的测量方法。
RTMS尤其适用于大直径旋转轴传递功率、静扭矩、动扭矩及扭振的高精度在线监测。
轴系的动态扭矩及扭转振动是影响机械工作可靠性与使用寿命的主要因素之一,对轴系扭转振动的测量分析,可以得到机器工作性能和轴系受力情况等重要信息。对于扭振分析,其***直接或***简单的是在对测点处的扭矩信号进行分析。与阶次分析原理相同,扭振分析的***终结果是得到不同转速下,不同谐次下的扭矩信号的幅值,然后依此为基础找到轴系的共振转速。在此基础上,可以根据计算数,得到轴系不同位置处的应力或者扭矩幅值,从而达到测试或监测扭振信号。研制了扭振测试分析仪,并对扭振测试方法和实现途径进行了阐述,通过实例证明,此方案简单、可行,可用于实际工程。
RTMS采用光纤传感器实现非接触扭转振动测量,硬件上采用叶片振动测量系统,相较于传统光电编码、齿轮脉冲等传统方法具有以下优势:
1.光纤非接触式测量,无需测量改装,无需动平衡;
2.传感器工作距离宽,动态响应快,对横向振动不敏感,满足轴系振动的实际工况要求。
3.双传感器差分扭转测量算法,***了传统方法中转速不稳导致的测量误差。
RTMS尤其适用于大直径旋转轴传递功率、静扭矩、动扭矩及扭振的高精度在线监测。
一般性扭矩测量的历史沿革和技术分类
扭矩传感器的发明***早可以追溯到发电机的扭矩测量,但是该种扭矩测量只能测量静态扭矩,对于像内燃机一类的动态或者时变的扭矩则不能适用。19世纪30年代,相位差式扭矩测量装置在欧洲发明成功,当时的测量精度可以达到±4%[1]。19世纪50年代,第1个可靠性高,可长时间使用的应变计发明成功[2],产品化之后,数以亿计的应变计用于各种场合的扭矩测量。
版权所有©2025 产品网