扭转振动,简称为扭振,不同于我们所说的常规振动。对发动机而言,产生的扭矩主要有机械运动产生的扭矩与不平衡惯性力产生的扭矩和周期燃烧气体压力产生的扭矩,作用在发动机上的总扭矩是压力产生的扭矩和惯性扭矩的总和。除了常规的振动之外,扭振是结构动力学行为的另一种表现形式,通常与其他振动荷载同时出现,也就是说结构发生振动时,除了常规的振动之外,还有可能存在扭转振动。扭振会引起结构疲劳,同时也会引起振动、噪声、舒适性等方面问题。对于自由的刚体而言,共有6个自由度,即三个平动自由度和三个转动自由度。因此,我们可以把运动自由度分为平动与转动两类。如果用牛顿第二定律来描述,那么,平动对应的是三个加速度,转动对应的是三个角加速度。平动对应的载荷是力,转动对应的载荷是力矩。
非接触测量可以满足对于扭矩测量的众多需求:
1)长期不间断、高可靠性扭矩测量。从第1枚应变片设计成功至今,应变计已经从原先单一的电阻式应变计逐渐发展成为利用多种物理原理制成的应力敏感元件,例如:声表面波传感器、逆磁致伸缩材料传感器、压电式扭矩传感器等。一般性扭矩传感器一旦失效,不仅会造成扭矩传感器自身的损坏,更严重的是会造成被测量设备的重大机械损坏。例如:应变式扭矩测量装置中应变计的引线需要靠滑环(见图1)引出,长时间工作后,滑环极易发热老化,甚至断裂脱落,所以出于可靠性的考虑,该方案多用于低速旋转轴的短期扭矩测量。如果选择非接触式扭矩传感器测量扭矩,它与旋转轴没有力的相互作用,工作过程中不受轴向负载和弯曲载荷,所以零件损耗小,工作寿命长,可以实现长期不间断、可靠性测量扭矩。
2)高动态性精砖扭矩测量。非接触测量法有多种,例如脉冲时序法、光电编码器测量法、激光测扭法。传感器自身的转动惯量是影响扭矩测量精度和动态性的重要问题,因为传感器是有重量的,安装在旋转轴上后就相当于增加了一个“额外质量”,这一质量在旋转轴较轻或者转速较慢的情况下是不能忽略的,那便会导致旋转轴的转速明显下降,测量得到的扭矩大小将受到严重影响。如果采用非接触式扭矩测量,传感器对旋转轴无附加外力,这可以从根本上提高测量的动态性和精准性,同时有助于提高系统的分辨率。
3)准确控制被测装置。非接触测量可以满足对于扭矩测量的众多需求:1)长期不间断、高可靠性扭矩测量。因为一般性扭矩测量装置的体积大,并且要与旋转轴直接接触,所以存在着一个不可避免的问题,即由于安装位置不当,或者接触测量时产生的干扰力或扭矩而改变旋转轴的运动状态,这类干扰是随机的,很难评估和定量,而扭矩测量往往又是作为控制单元的反馈信号。这样就会直接导致控制的准确性难以保证。唯有采取非接触式扭矩测量,从源头上消除传感器施加在旋转轴上的附加力,末端控制的高准确性才有可能实现。
版权所有©2025 产品网