航空发动机叶片动频和动应力测量的主要特点是在高速旋转下的测量。高速旋转下测量一方面对传感器(如应变片)的安装和防护,对连接电缆的安装、焊接和防护等均提出了一些特殊的要求;另一方面对信号传递装置(如引电器等)要求也较为苛刻;利用有限元方法分析了某径流式涡轮增压器叶片的振动特性,得出了叶片的各阶自振频率及相应振型,计算结果与实验结果较为吻合。此外,由于航空发动机的整机振动激振源复杂,再加上噪声,因此对其振动信号的分析处理需要采用多种方法进行反复研究比较,方可获得比较理想的测试结果。
风电机组的叶片上安装振动加速度传感器。由于风速变化而引起叶片在轴向方向上产生振动,该振动加速度传感器能够对叶片振动的加速度数值进行采集测量,反应叶片振动的运动性质。由于风电机组的机舱工作受到风速流动的推力和压力,以及温度变化等方面的影响,应采取工作频率范围较宽、坚固耐用以及受到外界干扰较小的传感器。本风电机组振动液压控制系统采用压电式加速度传感器,它具有压电材料受力产生电荷信号无需外界电源、抗干扰能力强、对工作环境不敏感的特点,利用弹簧质量系统原理,在传感器芯体质量受到振动加速度作用后产生一个与该加速度成正比的力,传感器的压电材料受此力作用后在其表面上形成与这一力成正比的电荷信号,完成对塔筒前后加速度的测量。Δt太小,会使x(nΔt)的数目剧增,增加了数据处理的工作量,并要求计算机的容量要大。
叶片是航空发动机的主要零件之一,其结构强度直接影响到发动机的工作效率和运行可靠性。叶片的工作环境比较恶劣,除了承受高速旋转的气动力、离心力和振动负荷外,还要受到热应力的作用,很容易发生故障。以航空发动机为例,据统计振动故障率占发动机中总故障率的60%以上,而叶片振动故障率又占振动故障率的70%以上。因此,有必要在叶片的设计过程中建立合适的有限元模型并进行振动固有特性分析和响应分析。本文针对叶片固有特性和振动响应的分析方法进行研究。叶片是叶轮机械的关键零部件,其工作环境恶劣,同时受高离心力、稳定气流力和交变气流激振力的作用,是故障多发件。首先对叶片固有特性分析方法和振动响应分析方法进行了综合性评述。
振动的叶片对刀具切削刃施加了巨大的应变,造成裂纹,并且随机械和热应力而增加。制造整体叶盘所必需的组件成本在3.3万~8万美元之间,而且刀具因磨损和裂纹需不断更换。通常,在切削仅4米的材料就需要换刀。夹紧系统的初始实验表明刀具使用时间可以增加2~3倍。夹紧系统终结叶片振动削减了制造成本,大约每个整体叶盘5500美元。在修理中,叶片不能从材料中一件一件铣削出来,因为所有叶片都已经在那里。因此,如果它们的刃出现了磨损,制造商使用激光金属沉积重新熔覆材料,之后铣削成想要的外形。工人可以尝试使用夹紧器或橡胶将叶片夹持到位,但是不太可能很好地再调准好它们。因此,工件之后必须重新测量,而且十分费时,夹紧系统就可以起到帮助。夹紧系统将叶片夹持在一个固***置,可以解决这个挑战。叶片几秒种就被固定在位置上,能够立即进行加工。目前已有一些较成熟的减振技术,如干摩擦阻尼和蜂窝密封减振,前者通过特殊的结构设计达到减振的目的,后者则能加剧气流扰动,提高气流的能量耗散,减小气流激振。该工艺与新整体叶盘工艺稍有不同,因为夹紧系统的元件排列在一个圆圈上,同时夹持所有叶片。它不会改变整体叶盘的几何外形,哪怕一微米也不会。
版权所有©2025 产品网