纳米级位移测量技术应用常用解决方案
作者:善测2020/4/15 21:20:52







将细胞、蛋白质、病原体、病毒、DNA等用纳米级的磁性小颗粒来标记,也就是磁化这些被探测的对象,再用高灵敏度的GMR磁阻传感器来探测它们的具体位置。这种应用方式在***及临床分析、DNA分析、环境污染监测有非常重要意义。

基于TMR效应的自旋阀生物磁传感器与传统电化学分析、压电晶体检测方法相比具有精度高、体积小的优势,主要用于病变部位的非接触式探测、室温心磁图检测、生物分子识别分析等。

磁性传感器还可用于准备样本的简单离心机,它用来帮助控制小型电机,使其变得更加安静和可靠。在助听器领域,应用了巨磁阻传感器IC (GMR)与霍尔。




?纳米级重复***精度超精密传动、驱动控制技术

微、纳米级高精度传感器的生产现场适应性更强,精度更高。RENISHAw的SP80超高精度数字式扫描测头,分辨率为0.02μm;自主研发高精度激光双光镊系统,光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现压纳米级位移和压皮牛级力的测量。ZEISS的VAST 三维六向扫描测头系统,采用平行片机构,分辨率为0.05μm,扫描范围达2mm。Werth的光纤测头,半径仅为12.5μm,号称世界较小,适用于超细、超精密工件的测量。

我国测量技术和相关仪器的研究取得了一系列重要进展,新型测量原理、测量技术、测量系统及仪器设备不断出现:新型传感原理及传感器、***制造的现场、非接触、数字化测量,微纳米级超精密测量、超大尺寸精密测量、基标准及相关测量理论研究等方面都有了长足的发展。这些技术有望在蛋白质折叠、RNA聚合酶合等研究领域提供单分子层次的信息。


从20世纪50年代至70年代,栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的测量和周期外的增量式测量结合起来,测量单位不是像激光一样的光波波长,而是通用的米制(或英制)标尺。

电容式传感器ZNX实际的基本包括了一个接收Tx与一个发射qiRx,其分别都具有在印刷电路板(PCB)层上成形的金属走线。在接收qi与发射走线之间会形成一个电场。电容传感器却可以探测与传感器电极特性不同的导体和尽缘体。当有物体靠近时,电极的电场就会发生改变。从而感应出物体的位移变化量。NIST科学家希望他们这种纳米级测量运动的新方法将有助于进一步小型化许多这样的微机械系统,并提高其性能。


商户名称:善测(天津)科技有限公司

版权所有©2025 产品网