电容间隙传感器(cs)安装于静止机匣上,可用于测量发动机叶片振动、间隙、轴系振动、金属碎屑(电荷量)、偏转角等检测。基于平板电容原理,***采用三同轴结构设计和低燥低电容传输电缆技术,响应带宽高至400KHZ,传输距离提升至50m,达到***指标水平。相对于磁电式、电涡流传感器,***具有响应速度快、测量范围宽、精度高等优点,适于工业现场复杂环境在线测量。
基于电容传感技术的触摸模块包括按键、滑块、触摸板、接近感应传感器、触摸界面、旋转编码器以及其它可用于替代噪声大、笨重的机械按键和开关的界面组件。与机械界面相比,它们不仅能够缩小系统电路板尺寸,而且还能降低功耗。例如,电容触摸界面通常工作于1.8V-5V之间,甚至低至0.9 V,但是它们在灵敏度、功耗要求和误触方面可能存在问题。
一个电容传感子系统需要图2中显示的组件。覆盖层是PCB(印刷电路板)上设备的顶层界面,与用户直接接触。它是一个光滑表面,用户通过触摸它执行具体操作。覆盖层可以是玻璃、木质、***、塑料或其它任何非导电材料。下一个组件是PCB。PCB根据介电常数及损耗选择。种类包括:面向低成本应用的FR4基板以及面向高成本应用的低损耗RT/duroid高频线路板材料基板。另一个重要组件是传感器感应点,要求非常灵敏,其设计和在PCB的布置有一定的标准。***后也是***重要的组件就是主控制器,它是负责实现触摸界面所需的所有信号调节与处理工作的大脑。
数字化测量原理
数字化测量首先是将传感器的电容量变为频率信号,常用的有LC振荡和RC振荡。以555多谐振荡器为例,若被测电容为Cx其振荡频率为f=1.443/[(R1 2R2)Cx],振荡器原理电路如图1所示,线路结构简单,受电源等外界因素影响小,振荡频率稳定。
转换电原理图由电容传感器的作用原理可知,不管是其极板间距离d的改变、极板相对面积S的改变或是电容介质常数ε的改变,都表现为是电容容量的改变。因f与C成反比,要测量Cx或ΔCx,不能直接对f进行计数,电容间隙传感器,用Δf计算ΔCx更是繁琐,然而振荡周期T=1/f=KCx与Cx成正比,所以,若定义一个可测量的参量A,采取一定措施,使得A=(1/K)T=Cx,则测出A即得到Cx,算出ΔA也就等于算出ΔCx。
电容(C)受电介质的相对介电常数(ε),金属板的面积(S)和两个金属板(D)之间的距离的影响。由于ε和S在分子侧,因此C随着值的增加而增加,并且C随着值的减小而减小。另一方面,C随着分母上的D值的增加而增加,并且随着值的减小而增加。
在电容传感器的情况下,通过将诸如空气或板的电介质夹在用于传感器的电极和具有GND电位的物体(例如人手)之间来形成伪电容器。由内置于设备中的电路测量并转换为数字值。
如果应用于上述等式,则D的变化影响C,因此测量C可以确定人手是否已接近或远离传感器。
版权所有©2025 产品网