DSB智能自主技术定义
DSB将自主技术定义为“使系统的特定功能能够自动运行,或者在经编程的边界内,能够‘自治’的一种(或一组)能力”。自主性将增加复杂/动态/***环境中设备的生存性和自适应性,减少人为干预,通过导航和通信继电设备实现合作以及多设备操作,并提供更高水平的环境态势感知。AUV智能自主技术能够根据内部和外部状态完成环境探测和分析、运动决策、优路径实时规划、自主寻的和避障等。为了适应复杂的水下环境,智能AUV对于自身模型的不确定性和外部扰动具有学习和自适应能力,其迅速发展是建立在大数据、深度学习、强化学习和计算硬件迅速发展的基础上。
智能可重构AUV平台已初具雏形
智能可重构AUV平台已初具雏形。冰岛研制的G***IA采用了可重构高度模块化设计,具有便于携带、可重构、易于更换电池、维护费用低、装拆方便等优点。美军的MANTA将子模块设计成一种共形组件,在智能控制下,众多子模块实现与母体平台的外体与机制共形,是一种智能结构体。但结构模块化仅是可重构的步,要实现真正的“可重构”,系统的智能控制仍是亟待解决的难点。
基于信息融合的分布式探测技术
基于信息融合的分布式探测技术。通过对分布式节点所获取的数据和信息进行关联与融合,是经典的分布式探测技术途径。但由于声音在水中传播慢,水声传播时延的影响在水声目标分布式探测过程中不可忽略,因此分布式水声信息融合探测有其特殊性,不同于陆上基于无线电传感器网络的信息融合探测方法。
此类方法主要可分为目标级融合探测和特征级融合探测2种。其中,目标级融合探测以各分布式节点目标探测信息为基础,结合各节点的位置、概率统计模型等信息进行加权与关联分析,再按一定的优化融合规则(如**似然、N-P准则等)进行全局。特征级融合探测则是先提取各分布式节点数据中的相关特征与参数,再利用特征关联进行目标的联合探测。国内外研究还主要集中在目标级融合探测方面,特征级融合研究尚处在起步阶段。
版权所有©2024 产品网