船舶除污机器人(如图2)
船舶除污机器人(如图2)。船体外部,特别是水下部分由于长期处于海水环境中,藤壶等海洋生物很容易寄生在船体表面。以往清除这些污物都需要在船舶进坞时用高压水或人工手动进行清理。除锈机器人采用磁盘等技术吸附在船舶外壁上,可以携带高压水、机械臂等装置,在不需要进坞的前提下进行水下清理,具有良好的船舶外壁除污效果。
随着科技的进步、与智能机器人相匹配的通讯控制网络的日益完善,一定还可以产生更加合理和科学的船检方法。我们期待着这些技术能及时应用到相关领域。同时,作为船舶检验方,其配套的相关船检规范也应及时完善,比如如何承认智能机器人的巡检结果,以及该结果与以往人工检验的等效性对接等等。
在海洋地质调查领域,侧扫声呐的海底声图
在海洋地质调查领域,侧扫声呐的海底声图可以显示出地质形态构造和底质的大概分类,甚至可以显示出洋脊和海山,是研究地球大地构造和板块运动的有力手段。在海洋工程勘探领域,利用侧扫声呐可以分析地貌、海底构造、底质,可以分析海床迁移和稳定性,所以也广泛应用于海洋工程勘探,如海底电缆、海底输油管线的路由器调查等。能发挥侧扫声呐系统优越性的是海底目标探测领域,侧扫声呐分辨率高,能实时连续显示海底声学图像,通常在海上作业的同时就能迅速判定目标的性质和大体尺度,在各类应急扫海测量和目标探测工作中,侧扫声呐起到了尤为重要的作用。
如何提高水声目标探测性能
在复杂海洋环境下,面向越来越低的目标输入信噪比条件,如何提高水声目标探测性能是水声信号处理领域亟待解决的问题。而从目标角度出发,通过研究目标信号在产生、传播与接收过程的特征,并利用目标特征进行高增益处理,以提高对目标信号侦察与探测性能是一种自然的选择。
基于固有特征量的目标探测技术。所谓固有特征量,就是指目标辐射噪声中受海洋信道长距离传输影响变化较小,或即使有变化,但变化规律已知或者是可控的那一部分分量。根据目标辐射噪声形成和传播机理,固有特征量往往集中在低频、甚低频段,因此此类目标探测技术主要聚焦在目标的低频、甚低频特征探测上。例如,李启虎等提出的带有自适应线谱增强的单频特***号探测技术,能够获得比传统能量探测方法更高的处理增益,有效探测具有线谱特征的微弱目标,从而有效提高了被动目标探测作用距离。
多基地主动目标探测技术
多基地主动目标探测技术。分布式探测系统工作在主动模式下即是多基地。多基地概念来自雷达领域,引入到水声领域已有数十年时间,但在应用上很难与雷达领域相比,究其原因主要是水声传播速度慢、时延不可忽略、信道时空起伏严重,基于概率统计与忽略时延的多基达探测与估计理论很难适用。因此,相关研究主要集中在利用简单声学模型(主要基于声呐方程)、结合经典统计理论与数据关联融合方法优化系统配置、探测与***性能方面,其中探测方法与基于目标级关联融合的被动探测方法类似,未考虑主动观测周期、传播时延等的影响,其性能还是依赖于单基地探测能力,很难利用多基地特性获取额外增益。
版权所有©2024 产品网