应对型数据治理缺点
批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。
数据治理包含
这里包括对业务、数据、应用、***架构、******等方方面面的认知。举个例子:你的业务战略目标是什么,业务域、业务线、业务项能不能说清楚;你有多少结构化数据、半结构化数据、非结构化数据,数据体量有多大,都存哪,使用场景、使用角色都是什么,数据和业务之间的关系是什么;你建设了多少应用系统,应用和业务之间的关系是什么;你的***架构长什么样,流程什么样,不同部门之间的关系是什么,权责利如何划分,信息化成熟度什么样,人员技能又如何;你的企业要遵守哪些******,有没有跨境业务,行业有没有监管要求?
数据治理数据适用、加工活动
数据处理活动需要具备明确的目的,并被用户***;
处理生物识别、健康、***账户、行踪轨迹等敏感个人信息,应取得个人的单独同意;
通过自动化决策方式向个人进行信息推送、商业营销,应提供不针对其个人特征的选项或提供便捷的拒绝方式。
数据传输、提供、公开活动
未经用户***,数据信息不得向第三方传输和提供;
数据信息特定目的适用,未经***不得不公开;数据信息不得***的原则。
数据治理数据分级
,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。如何给数据定级,一个重要的依据就是要判断该数据***时所造成的影响,包括影响的对象、影响的范围和结果等,这些取决于业务分类的准确性。数据分级另一个前提就是合规的梳理,企业可以通过这项工作清楚地了解哪类数据是被要求必须受保护的,从而结合分类的结果更地对数据进行分级。
版权所有©2024 产品网