市数字化转型咨询即时留言「北***客动力」
作者:北京派客动力2022/8/15 9:02:30
企业视频展播,请点击播放
视频作者:北***客动力科技有限公司






数据治理管理规范

数据化建设过程中的管理规范,更多体现在数据融合和交换的管理方法中,该类方法是以应用软件为载体的数据管理类规范,通常在不同应用行业、不同使用者中采用不同的管理规范,其相互之间既有共通之处,也有各企业的特点。

数据标准和数据规范的制定将是数字化社会的主要工程,也是***建设别数据统一共享开放平台的基石。




数据治理数据形态

作为数据安全工作者,了解企业自身数据的步就是数据形态的认知。数据体量有多大,是TB、PB还是ZB级?哪些是结构化数据、哪些是半结构化数据、哪些是非结构化数据?这些数据都存储在哪里,企业都用到了哪些种数据库,是传统的关系型数据库、Mpp数据库、K-V数据库还是基于Hadoop的数据库?这些数据的增量情况如何等等,都属于数据形态的范畴,都需要梳理了解。





数据治理数据分类

大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类可以***存在,然而数据分级在某种程度上来说,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。




数据治理数据使用场景

场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据***,同一数据域在不同场景下的***规则等。

真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。




商户名称:北京派客动力科技有限公司

版权所有©2024 产品网