应对型数据治理缺点
批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。
数字化浪潮的***方向将是相关受益行业
单位是本轮数字化建设的主要需求方。对于众多大中型企业来说,数字化建设早已实施,比如***、证券、政务、能源、电子、航空等诸多领域,而的数字化建设仍处于政务透明公开、办事效率提升的阶段,仍是业务驱动型的需求占主导,而业务驱动是属于刚需,并且政务内容的需求具有多样性和流程化的特点,决定了的数字化建设是本轮建设的重要领域。
数据治理数据形态
作为数据安全工作者,了解企业自身数据的步就是数据形态的认知。数据体量有多大,是TB、PB还是ZB级?哪些是结构化数据、哪些是半结构化数据、哪些是非结构化数据?这些数据都存储在哪里,企业都用到了哪些种数据库,是传统的关系型数据库、Mpp数据库、K-V数据库还是基于Hadoop的数据库?这些数据的增量情况如何等等,都属于数据形态的范畴,都需要梳理了解。
版权所有©2024 产品网