我喜欢把数据赋能和数字化转型放在一起讲,因为数字化转型的目标之一就是数据赋能。众所周知,我们从93年开始逐步发展信息化,从为了解决业务上0和1问题,为了解决无纸化办公,到现在的大数据时代,近30年的时间总结起来,数据领域一共就三件事:解决数据孤岛问题、隐私数据保护以及提供数据服务。翻译过来就是数据治理、数据安全治理以及数据赋能。
数据治理数据安全应用
数字化社会离不开数字的流通和信息的交互,如何明确数字资源的产权,保障数据流通的安全型,在数据跨境传输和安全保护领域如何确保公民和***的数据安全将是数字化建设的重要环节,包括数据应用安全和数据生命周期安全两个方面。
数据应用安全是数字化应用过程中产生的新课题,包括如何人脸识别技术、数字签名技术、数字认证技术、加密传输技术、网络隔离技术等等,该类技术支撑数据在不同场景中被安全应用,具有良好的发展前景。
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
数据治理数据库池化
派客动力数据库池化技术可在生产与备份进行实时数据同步,确保两端数据间的事务一致性,当生产库发生故障无法访问时,可以保证分钟级的任意时间点业务数据接管,从而保障业务衔接的连续性;
同时支持智能接入、轻量存储、集约管理、敏捷取用等,操作简单,细粒度切换,提升企业服务质量。
操作简单,细粒度切换。
版权所有©2025 产品网