数据治理过程
从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从到终端再回到形成一个闭环负反馈系统(控制理论中趋稳的系统)。从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合。
派客动力数据治理
用户可利用有效的数据分类方法,依据自身业务特点对内部数据进行归类处理,不仅能够清晰地梳理数据资产,更合理地使用、维护和扩充数据,还可以在业务层面加深数据的辨识度,无论是对数据实现规范化管理,还是在业务架构层面对应用系统进行“通拆并砍”,都能够做到有迹可循,有理可依。数据分级是指采用规范、明确的方法区分数据的重要性和敏感度差异,并确定数据级别。数据分级有助于用户根据数据不同级别,确定数据的对外开放程度,以及在其生命周期的各个环节应采取的安全防护策略和管控措施,进而提高数据管理和安全防护水平,确保数据的完整性、保密性和可用性。
数据治理数据***
数据***不仅仅是代名词,同样也蕴含着复杂且多样的***技术能力。在不同环境下,企业对于敏感数据***的要求也不尽相同。例如:***后的数据要求性、可用性、完整性等。通常来说,市面上多数的***产品中可通过内置的规则对、姓名、等常用的敏感数据实现***,并满足后续的测试、使用等需求,而更多真实环境中,往往需要***的
敏感数据实际在***操作中更为复杂化。
版权所有©2025 产品网