数据治理数据性要求
作为数据应用的内容本身,将会有更多的性要求,因此,数据整个生命周期的安全将是企业在数字化融合下的重要考量内容,数据在采集、传输、处理、交换、销毁全生命中,应该采用哪些技术手段,保障数据不被获取,数据如何管理才能平衡业务发展和安全管控之间矛盾。于此相关的数据技术、数据库审计技术、数据交换技术、网络监控技术等的,该类技术在数字化建设浪潮中将迎来快速发展的机遇。
数据治理数据使用场景
场景决定数据安全工具的选择,例如呼叫中心、测试开发、对内数据流通、对外共享交换等,每种场景都有适用于自己的数据安全工具。当然,场景的梳理还有助于特定安全工具的安全策略制定,例如数据***,同一数据域在不同场景下的***规则等。
真正的数据安全项目,耗时耗力的就是咨询梳理阶段,企业大部分精力和节奏也都消耗于此,技术方案的落地只是工具的选型和实施,其实反而不是那么重要。正如前文所说,只要前序工作做的好,一切便都是水到渠成的。
想要对敏感数据加以保护,首先要发现出存在企业系统中的敏感数据,并保障其性。例如:系统内的某一列字段为联系方式,由与座机号组成,这些信息由于存在于同一列中,若是从字段所设定的数据特征去发现,很容易将其中一个作为非敏感数据而无法形成的敏感数据发现。
派客动力敏感数据发现系统,能够从企业或***内部海量业务系统及磁盘文件中自动识别、发现并***敏感数据,可基于元数据、数据内容进行敏感数据识别,内置的敏感数据发现算法,且支持用户自定义敏感数据发现规则,构建企业全景敏感数据地图。
版权所有©2025 产品网