数据治理过程
从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从源头到终端再回到源头形成一个闭环负反馈系统(控制理论中趋稳的系统)。从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合。
数据治理应对型治理
应对型数据治理是指通过客户关系管理 (CRM) 等“前台”应用程序和诸如 企业资源规划 (ERP) 等“后台”应用程序***主数据,例如客户、产品、供应商、员工等。然后,数据移动工具将新的或更新的主数据移动到多领域 MDM 系统中。它整理、匹配和合并数据,以创建或更新“黄金记录”,然后同步回原始系统、其它企业应用程序以及数据仓库或商业智能分析系统。
数据治理数据拥有者
经个人同意后直接获得数据的结构为数据的拥有者,数据拥有者在用户知晓数据用途并得到用户同意的情况下,可以做特定用途的数据处理。
数据的拥有者具有数据的使用权,更重要的是具有保护数据信息的职责,应保证数据不被***、不被用作其他用途、应接受合规性审核。
数据的拥有者需要设定数据安全的责任者、监督企业数据应用。
数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
版权所有©2025 产品网