数据治理数字标准
数字化社会的体现标志是什么,笔者认为数字化社会的标志不是数字应用场景的具体化,也不是数据应用的多样化,而是全社会对数字有一个共同的标准、共同的规范,所有的数字化活动应遵循相关的要求,比如分类分级标准、数据安全规范、数据保护条例等等。
全社会将从行业归属角度,逐步建立数据分类分级标准,其中离不开的引导,分类分级的标准将是未来数据大融合、一个数据标准的数据基石,如何做好分类分级,凝聚社会共识,该类工作将会以咨询的方式完成规划,以公示的方式完成补充,形成数据分类分级标准。
数据治理数据形态
作为数据安全工作者,了解企业自身数据的步就是数据形态的认知。数据体量有多大,是TB、PB还是ZB级?哪些是结构化数据、哪些是半结构化数据、哪些是非结构化数据?这些数据都存储在哪里,企业都用到了哪些种数据库,是传统的关系型数据库、Mpp数据库、K-V数据库还是基于Hadoop的数据库?这些数据的增量情况如何等等,都属于数据形态的范畴,都需要梳理了解。
数据治理数据管理流程
数据管理流程、数据申请流程、数据创建流程、数据生产流程、数据修改流程、数据销毁流程、数据共享交换流程等,基本贯穿整个数据生命周期。企业究竟有没有统一的数据使用流程,数据使用流程是什么样的,是数据认知的重要组成部分,作为数据安全的工作者,必须清楚地了解内部数据使用的全流程,方能制定出合理合规的管理方案。
派客动力数据治理
派客动力敏感数据发现系统具备智能记忆功能,用户已经确认的敏感字段无需重复确认。系统按照用户的敏感数据或已进行预设的敏感数据特征去系统中筛查敏感数据,筛查出的结果会经人工干预进行确认,为了快速确认敏感数据,可利用系统中的批量设置功能,不再需要一个字段一个字段的查看,通过找到与该字段有关联的敏感数据进行批量确认即可。当表结构根据业务发生变化时,系统自动开启的智能记忆功能,将已确认好的敏感数据不再进行二次及多次发现。
版权所有©2025 产品网