应对型数据治理缺点
批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。
数据治理主动型治理
主动数据治理的个优势是可在源头获得主数据。具有严格的“搜索后再创建”功能和强大的业务规则,确保关键字段填充经过批准的值列表或依据第三方数据验证过,新记录的初始质量级别将非常高。
主数据管理工作通常着重于数据质量的“使它干净”或“保持它干净”方面。
如果 MDM 系统中的数据质量初始级别非常高,并且如果您不会通过从 CRM 或 ERP 源系统中传入不、不完整或不一致的数据来连续污染系统,则主数据管理的“保持它干净”方面非常容易。
主动数据治理还可有效消除新主记录的初始录入和其认证以及通过中间件发布到企业其余领域之间的所有时间延迟。由用户友好的前端支持的主动数据治理可将数据直接录入到多领域 MDM 系统中,可应用所有典型的业务规则,以整理、匹配和合并数据。当初始数据录入经过整理、匹配和合并流程后,此方法还允许数据管理员通过企业总线将更新发布到***的其它领域。
派客动力数据治理方面实力
确保业务对象完整性:基于完整的业务对象进行***操作,确保不***数据的二义性以及业务关联性。内置多种***算法:系统内包含函数、初级、算法模式,用户可根据实际业务场景需求,对敏感数据通过自定义算法生成规则从而使敏感数据转换为虚构数据。同时支持抽取式、本库***:系统支持抽取式***和本库***两种方式,是业内一款同时支持抽取式不落地***以及就地***两种模式的***系统。任务监控:用户可通过监控监测所有计划开展的任务进度、包括测试数据抽取、子集抽取和发现、***任务等。
数据治理GDPR
对于业务涉及到欧盟的企业来说,GDPR的出现,无疑将极大地冲击它们的生存法则,如果想满足GDPR的要求,恐怕要耗费大量成本来整改自己的产品或服务,因此企业合规成本的提高是中国数字经济直观的影响。但深究的话,问题似乎要更复杂。满足GDPR的合规要求对于大企业来说虽然增加了成本,但凭借庞大的体量,完全可以承受得起,甚至更可以借此机会塑造一个具有公信力的全新企业。
版权所有©2025 产品网