数据治理主动型治理
主动数据治理的个优势是可在源头获得主数据。具有严格的“搜索后再创建”功能和强大的业务规则,确保关键字段填充经过批准的值列表或依据第三方数据验证过,新记录的初始质量级别将非常高。
主数据管理工作通常着重于数据质量的“使它干净”或“保持它干净”方面。
如果 MDM 系统中的数据质量初始级别非常高,并且如果您不会通过从 CRM 或 ERP 源系统中传入不、不完整或不一致的数据来连续污染系统,则主数据管理的“保持它干净”方面非常容易。
主动数据治理还可有效消除新主记录的初始录入和其认证以及通过中间件发布到企业其余领域之间的所有时间延迟。由用户友好的前端支持的主动数据治理可将数据直接录入到多领域 MDM 系统中,可应用所有典型的业务规则,以整理、匹配和合并数据。当初始数据录入经过整理、匹配和合并流程后,此方法还允许数据管理员通过企业总线将更新发布到***的其它领域。
数据治理数字标准
数字化社会的体现标志是什么,笔者认为数字化社会的标志不是数字应用场景的具体化,也不是数据应用的多样化,而是全社会对数字有一个共同的标准、共同的规范,所有的数字化活动应遵循相关的要求,比如分类分级标准、数据安全规范、数据保护条例等等。
全社会将从行业归属角度,逐步建立数据分类分级标准,其中离不开的引导,分类分级的标准将是未来数据大融合、一个数据标准的数据基石,如何做好分类分级,凝聚社会共识,该类工作将会以咨询的方式完成规划,以公示的方式完成补充,形成数据分类分级标准。
数据治理数据分类
大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类可以***存在,然而数据分级在某种程度上来说,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。
想要对敏感数据加以保护,首先要发现出存在企业系统中的敏感数据,并保障其性。例如:系统内的某一列字段为联系方式,由与座机号组成,这些信息由于存在于同一列中,若是从字段所设定的数据特征去发现,很容易将其中一个作为非敏感数据而无法形成的敏感数据发现。
派客动力敏感数据发现系统,能够从企业或***内部海量业务系统及磁盘文件中自动识别、发现并***敏感数据,可基于元数据、数据内容进行敏感数据识别,内置的敏感数据发现算法,且支持用户自定义敏感数据发现规则,构建企业全景敏感数据地图。
版权所有©2025 产品网