应对型数据治理缺点
批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不的主数据。因此,这会降低多领域 MDM 方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。
数据治理步骤
共享数据准备阶段
共享数据提供方根据共享业务需求完成共享数据归集、数据分类分级,并对共享数据进行持续性的维护,保证共享数据的准确、完整、可用和真实。
共享数据交换阶段
需对交换服务的资源方和使用方之间提供审核及***等权限,共享数据交换服务方采用身份鉴别、访问控制、安全传输、过程追溯等技术手段,保证信息共享交换过程中交换实体可信、数据传输安全、交换行为记录可追查。
数据治理数据安全现状
随着大数据的发展性、集中性和开放性的不断提高,数据安全的薄弱性开始凸显。国内外的数据***事件频频发生,用户的个人隐私和企业的数据安全受到极大的威胁和挑战。在数字化驱动的环境下,数据***已不再是单一式的外部攻击,逐渐转为内部人员对信息化系统的敏感信息进行倒卖或,数据安全防护岌岌可危,也是影响大数据发展的问题。
版权所有©2025 产品网