钢化玻璃及其生产工艺钢化玻璃的发展可以追溯到17世纪中期,有一位叫罗伯特的莱茵国王子,曾经做过了一个有趣的实验,他把一滴熔融的玻璃液放在冰冷的水里,结果制成了一种极坚硬的玻璃。这种高强度的颗粒状玻璃就像水滴,拖有长而弯曲的尾巴,称为“罗伯特王子小粒”。可是当小粒的尾巴受到弯曲而折断时,令人奇怪的是整个小粒因此突然剧烈崩溃,甚至成了细粉。上述做法,很像金属的淬火,而这是玻璃的淬火。这种淬火并没有使玻璃的成分发生任何变化,所以又叫它是物理淬火(physical tempered),因此钢化玻璃称为tempered glass,也叫淬火玻璃。
玻璃表面和边部在加工、运输、贮存和施工过程,可能造成有划痕、炸口和爆边等缺陷,易造成应力集中而导致钢化玻璃自爆。玻璃表面本来就存在大量的微裂纹,这也是玻璃力学行为服从断裂力学的根本原因。这些微裂纹在一定的条件下会扩展,如水蒸气的作用、荷载的作用等,都可能加速微裂纹的扩展。通常情况下微裂纹的扩展速度是极其缓慢的,表现为玻璃的强度是一恒定值。但是玻璃表面的微裂纹有一临界值,当微裂纹尺寸接近或达到临界值时,裂纹快速扩张,导致玻璃。如果玻璃表面存在接近临界尺寸的微裂纹,如玻璃表面和边部在加工、运输、贮存和施工过程造成的划痕、爆边等缺陷尺寸就较大,玻璃可能在的荷载作用下就导致玻璃表面微裂纹快速扩张,终导致玻璃。
理论分析和工程实践证明,预应力越大,钢化程度越高,自爆量也越大。普通平板玻璃和半钢化玻璃几乎没有自爆现象,是因为钢化玻璃沿玻璃板厚度方向上下两表面处于压应力,中间层处于张应力。表面压应力越高,一般情况下钢化玻璃的强度也越高,但是中间层的张应力也越高,过大的张应力将会增加钢化玻璃的自爆。窗户问题,窗户变形或给玻璃热膨胀留的缝隙不够,导致玻璃受热膨胀后受挤压发生爆裂。
如果钢化时冷却速率是相同的,当玻璃下表面的温度低于上表面温度时,下表面先固化,上表面继续收缩,那么也会导致玻璃出现上弯。实际生产中上弯形成的原因有:①玻璃上部温度比下部温度高;②玻璃上部风压小于玻璃下部风压。对应的解决办法有:①降低下部温度或者增加上部温度;②增大上风压或降低下风压或者调整急冷段风栅高度。