利用突变技术改造***:比如型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了***荧光蛋白,蓝色荧光蛋白等等。突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及研发、等等方面。
核酸分子发生变化是生物突变的分子基础,而***突变只是一对或几对碱基发生变化。其形式有碱基对的置换,如DNA分子中A-T碱基对变为T-A碱基对;另一种形式是移码突变。由于DNA分子中一个或少数几个核苷酸的增加或缺失,使突变之后的全部遗传密码发生位移,变为不是原有的密码子,结果改变了***的信息成分,终影响到有机体的表现型。
通过诱发使生物产生大量而多样的***突变,从而可以根据需要选育出优良品种,这是***突变的有用的方面。在化学诱变剂发现以前,植物育种工作主要采用辐射作为诱变剂;化学诱变剂发现以后,诱变手段便大大地增加了。在微生物的诱变育种工作中,由于容易在短时间中处理大量的个体,所以一般只是要求诱变剂作用强,也就是说要求它能产生大量的突变。对于难以在短时间内处理大量个体的高等植物来讲,则要求诱变剂的作用较大,效率较高并较为专一。所谓效率较高便是产生更多的***突变和较少的染色体畸变。所谓专一便是产生特定类型的突变型。以色列培育“彩色青椒”关键技术就是把青椒种子送上太空,使其在完全失重状态下发生***突变来育种。
诱变剂接触 DNA以前必须首***入细胞,才能诱发突变。高等植物对于紫外线的诱变作用较不敏感的原因就是因为紫外线不易穿透它的细胞壁。化学***的渗透和细胞膜的结构有很大的关系。鼠沙门氏菌有一个改变细胞膜成分的突变型深度粗糙 (rfa),它使细胞膜对于许多的渗透性增大,从而提高了细胞对许多化学诱变剂的敏***。