系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调等操作然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。
造成射频干扰的因素有哪些?
如今可能造成射频干扰的原因正不断增多,有些显而易见容易跟踪,有些则非常细微,很难识别发现。虽然仔细设计公用移动通信站可以提供一定的保护,但多数情况下对干扰信号只能在源头处进行控制。本文讨论射频干扰的各种可能成因,了解其根源后将有助于工程师对其进行测量跟踪和排除。
射频干扰信号会给无线通信公用移动通信站覆盖区域内的移动通信带来许多问题,如电话掉线、连接出现噪声、信道丢失以及接收语音质量很差等,而造成干扰的各种可能原因则正以惊人的速度在增长。
值得一提的是,77GHz毫米波雷达能够在全天候场景下快速感知0-300米范围内周边环境物体距离、速度、方位角等信息。在发展过程中,低成本、小型化、高集成度已成为毫米波雷达的重要指标,而毫米波技术也与半导体工业发展息息相关。“早期CMOS工艺并不能实现超高频率,近些年才能实现超高频率”。
毫米波雷达相对于单眼或立体摄像头和红外雷达的测量距离更长,且不受白天黑夜的影响,并且毫米波雷达在恶劣天气状况下的表现也相对更优。但,在目前的技术条件下,毫米波雷达对行人以及自行车等较小障碍物的探测能力还比较弱。这种现象在中国将更加突出,由于3mm以上频段可以克服上述的缺陷,所以后期随着技术的发展及工艺的成熟,存在着向更高的频段如3mm频段延伸的可能。
版权所有©2025 产品网