为了提高电机的转矩特性,许多学者和研究机构在永磁同步电机的结构设计上进行了大胆的尝试和革新,并且取得了许多新进展。为了解决槽宽和齿部宽度的矛盾,开发了横向磁通电( transverse flux machine)技术,电枢线圈和齿槽结构在空间上垂直,主磁通沿着电机的轴向流通,提高了电机的功率密度;采用双层的永磁体布置,使得电机的交轴电导提高,从而增加了电机的输出转矩和***大功率;改变定子齿形和磁极形状以减少电机的转矩脉动等。
永磁电机的优缺点主要是以下几点:其优点是与其他类型的无刷电机不同,永磁电机不需要电流来支持其磁场。因此,如果体积小或重量轻,永磁电机可以提供***大的扭矩,并且可能是***好的选择。无磁化电流也意味着在“***佳点”负载下效率更高 - 即电机性能***佳的地方。其他缺点包括由于其固有的反电动势在故障条件下难以管理的事实。即使变频器断开,只要电机旋转,电流就会持续流过绕组故障,从而导致齿槽转矩和过热,并且都是***的。
近些年永磁同步电动机得到较快发展,其特点是功率因数高且效率很高,在许多场合开始逐步取代常用的交流异步电机,其中异步起动永磁同步电动机的性能优越,是一种很有前途的节能电机,接下来为大家介绍下永磁同步电动机的工作原理吧。
通常所说的永磁同步电动机工作原理是正弦波永磁同步电动机,同一般同步电动机一样,正弦波PM***的定子绕组通常采用三相对称的正弦分布绕组,或转子采用特殊形状的永磁体以确保气隙磁密沿空间呈正弦分布。这样,当电动机恒速运行时,定子三相绕组所感应的电势则为正弦波,正弦波永磁同步电动机由此而得名。
版权所有©2024 产品网