III型瓶
当前我国储氢瓶已经开始研发、推广IV型瓶,当前国内以III型瓶为主,正在逐步像IV型瓶过度,IV型瓶可以达到75MPa压力并且采用塑料内胆重量更轻,承受压力更大。
当前国内企业生产的三型瓶的主要原材料碳纤维,由于研发起步较晚,面临工艺落后、碳纤维原材料性能差等原因,国产碳纤维还不能满足车用储氢瓶的要求,主要依赖进口。
氢系统管路安装位置及走向要避开热源及可能产生电弧的地方,至少应有200mm的距离。尤其管路接头这种潜在漏点不能位于密闭的空间内。高压管路及部件位于可能产生静电的地方要可靠接地或有其他控制氢泄漏量及浓度的措施,即便在产生静电的地方,也不会发生安全问题;
储氢容器和管路一般不应安装在乘客舱、行李舱或其他通风不良的地方;如果不可避免要安装在行李舱或其他通风不良的地方,应设计通风管路或其他措施,将可能泄漏的氢气及时排除;
供氢系统
公告冲击试验
车载供氢系统集成在设计过程中,由于结构设计考虑不到位,有可能需要多进行几轮的优化,直到满足标准要求。锁定车载供氢系统方案后,开始准备车载供氢系统样件进行公告试验,同时也是验证我们有限元分析结果的可靠性。
如下图所示,这是一款由奥扬科技为匹配某款物流车设计的车载供氢系统,压力等级为35MPa。完全依据模拟路况的条件进行试验,经过±X、±Y、±Z六个方向8个g的加载冲击后,检查车载供氢系统的变化,满足GB/T 26990-2011《燃料电池电动汽车车载氢系统技术条件》、GB/T 29126-2012《燃料电池电动汽车 车载氢系统试验方法》要求。同时试验后的车载供氢系统做了一轮常规的保压测试,确保了冲击后的车载供氢系统没有发生***。
燃料电池汽车是一个复杂的汽车系统,控制上也存在很多需要优化的问题。
1)燃料电池本身控制
质子交换膜燃料电池是一个多输入、多输出的非线性时变系统,其系统比较复杂,难以建模,会受到进气压力、温度、湿度、电流密度等多种因素的影响。因此,为了提高系统的工作性能,保持良好的运行状态,恰当的控制策略依然是未来很长一段时间内的研究课题。
2)冷启动控制
当环境温度较低时,启动燃料电池会出现结冰现象,***电堆结构,影响电堆寿命。一般通过关机时吹扫和开机时加热两种方法辅助进行冷启动。如何在保护电堆的前提下缩短冷启动时间,也是对燃料电池汽车发展过程中不得不优化的问题。
3)整车控制
燃料电池从本质上讲是一台发电机,不能储存电能,一般与电池一起作为车辆的能量源,所以燃料电池汽车等价于一台增程式电动汽车,只是用燃料电池代替了发动机。由于燃料电池效率随负载变化、功率响应较慢等等原因,导致在整车动力性、经济性优化控制上依然存在较大提升空间。
版权所有©2025 产品网