乌海海水电极免费咨询「在线咨询」
作者:化工节能设备2021/11/19 0:52:59






通过以上的研究工作,本得到以下具有创新性的研究成果: 在电沉积制备活性时,通过冷却电解液的更换可以有效缩短电沉积开始时槽压上升的时间。如果不采用冷却电解液,由于电解液温度的升高,槽压上升到正常状态的时间会随着电解次数的增加而不断延长。 在沉积过程中,由于锌有形成非致密性沉积物的倾向,如果沉积参数控制不适当,致密状、海绵状和树枝状锌的形成都是可能的。本方法生产的电沉积活性需要控制较高的电流密度,以160mA/cm2-180m WP=5 A/cm2为宜。




研究了含氨氮(NH4+-N)废水在循环流动式电解槽中的电化学氧化,其中阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极.考察了出水放置时间、进水流量和电流密度对氨氮去除的影响,并对能耗、阳极效率和瞬时电流效率(ICE)进行分析.结果表明,在氯离子浓度为400 mg/L,初始氨氮浓度为40 mg/L时,进水流量对氨氮去除的影响不大,电流密度的影响比较大.在进水流量为600 mL/min,电流密度为20 mA/cm2,电解时间为90 min时,氨氮去除率为99.37%,去除1 kg氨氮的能耗和阳极效率为500 kW.h和2.68 h.m2.A,瞬时电流效率(ICE)为0.28.表明电解氧化含氨氮废水具有较好的应用前景.


系统地考察了有关修饰膜制备和测试实验条件对传感器性能的影响,结果表明:传感器的佳工作电位是 0. 05 V,测试溶液的适pH值为7.0.在选定的工作条件下,传感器的灵敏度为150 nA/mmol*L -1,线性范围为0.2~2 mmol/L,响应时间为1 min,寿命在1个月以上.本方法制得的传感器能有效消除抗坏血酸,尿酸的干扰,有望用于血液中胆固醇的测定.


以低温固相反应法制备MnO2及该材料化学掺杂Fe3+,获得的电极材料借助X射线衍射,扫描电镜测试对其物理性质作了表征. 以MnO2作为超级电容器电极材料的单电极活性物比电容为311~149 F/g,掺杂Fe3+的电极材料比电容为318~114 F/g(电流密度50~1 000 mA/g). 由这些材料制得的超级电容器的比能量分别为27.6~9.95 Wh/Kg和28~10 W*h/Kg. 从充放电曲线可见,化学掺杂的配比对电化学性能的影响较大,掺杂量为n(Mn):n(Fe)=10:1时,材料具有良好的放电性能,而其它配比对MnO2的包覆起到了钝化膜的作用. 从1 000次的循环性能看,在电流密度为1 000 mA/g时,掺杂MnO2比未掺杂的具有较好的循环性,二者的比电容分别衰减到90%和70%,表明化学掺杂Fe3+有利于提高MnO2电极的放电性能和循环性.


商户名称:苏州新区化工节能设备厂

版权所有©2025 产品网