河北蛋白质晶体板价格在线咨询「博亚捷晶」
作者:博亚捷晶2021/11/2 21:21:23

***院新技术提升蛋白质结晶成功率

100多年前,吉布斯等人提出“经典成核理论”,结晶过程是一些分子或原子偶然聚集在一起,碰巧以结晶形式排列,然后其他分子(原子)逐个附着,形成更大的结晶相,该结论得到了学术界广泛认可。

然而,经典成核理论也有诸多缺点,它表明蛋白质晶体的成核并不是沿着经典路线而是更复杂的路线进行的,即两步法成核理论。步是形成足够尺寸的溶质分子团簇,第二步是团簇重新排列形成有序结构。目前的实验和理论研究,证明了两步法成核理论不仅可以应用到生物大分子(如蛋白质)上还用到了有机小分子上,表明这一机理或许会成为大部分溶液析晶过程的基础。在液滴内从无序到有序结构团簇的形成,也就是第二步,决定晶体成核速率,由于这一步中分子复杂性增加,成核的时间变长,因为高度的构象灵活性,更复杂的分子形成佳晶格结构会更困难。传统的成核剂材料,如矿物晶体、石墨烯、多孔材料如多孔硅等都曾作为成核剂用于蛋白质结晶实验中,这些成核剂的设计主要依赖于经典的成核理论,无法适用于构象灵活性强的绝大多数蛋白质分子。针对这一难题,材料界面中心和武汉***院团队经过不断的设计和实验验证,终将成核剂材料设计为具有超构表面的材料。






蛋白质结晶方法

液-液扩散(Liquid–Liquid Diffusion) 这种方法中,蛋白质溶液和含有沉淀剂的溶液是彼此分层在一个有小孔的毛细管中,一个测熔点用的毛细管一般即可(如图1.2)。下层是密度大的溶液,例如铵或PEG溶液。如果如MPD被用作沉淀剂,它会在上层。以1:1混合,沉淀剂的浓度应该是所期终浓度的二倍。两种溶液(各自约5μl)通过针头导入毛细管,先导入下层的。通过一个简易的摇摆式离心机去除气泡。再加入上层,进而两层之间形成一个明显的界面,它们会逐渐彼此扩散。 Garc′?a-Ruiz and Moreno(1994)已经发展液-液扩散技术至法。蛋白质溶液通过毛细力被吸入狭窄的管中,管的一端是封闭的。接着,开放端入置于小容器的凝胶中,凝胶使得管竖直,蛋白质溶液与凝胶接触。含有沉淀剂的溶液被倒在凝胶上,整个装置被保存于封闭的盒子以防蒸发。沉淀剂通过凝胶和毛细管的扩散时间可以由毛细管插入凝胶的深度控制,从而蛋白质溶液中即可形成过饱和区域,毛细管底部高而顶部低。这也可作为一个筛选佳结晶条件的额外信息。




蛋白质晶体板结构

研究蛋白质晶体结构及其性质的晶体学分支学科。蛋白质是由众多的α-氨基酸作为单体缩合而成的多肽链通过交联构成的。多肽链的氨基酸及其交联位置代表蛋白质分子的一级结构,而多肽链按一定方式在空间分布则形成二级结构(如α-螺旋和早折叠片等)和三级立体结构(如多肽链折叠为球形),作为亚基的三级结构还可聚集成四级结构等。



传统结晶板蛋白质晶体板比较

在20℃时虽然微流控芯片上的结晶条件数少于24孔结晶板(67 vs 94),但主要是嗜热菌蛋白酶的结晶条件数显著减少,其他4种蛋白在两种方法上均有相近的结晶条件数,表明微流控芯片能以接近24孔结晶板的效率进行蛋白质结晶筛选.但是,在4℃时微流控芯片与24孔结晶板有60%的结晶条件不同,20℃时有90%的结晶条件不同,这表明目前的这种微流控芯片还不能直接代替传统的24孔结晶板,它可以作为蛋白质结晶筛选时的一种补充方式。



商户名称:博亚捷晶科技(北京)有限公司

版权所有©2024 产品网