在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。
未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。
另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得焊缝。焊接是通过加热、加压,或两者并用,用或者不用焊材,使两工件产生原子间相互扩散,形成冶金结合的加工工艺和联接方式。
焊接工艺几乎运用了世界上一切可以利用的热源,其中包括火焰、电弧、电阻、超声波、摩擦、等离子、电子束、激光束、微波等等(我司主要以弧焊、电阻焊自动化焊接设备为主),历史每一种热源的出现,都伴有新的焊接工艺的出现。但是,至今焊接热源的开发与研究并未终止。而在另一方面,金属在焊接热量作用下,所产生的美妙的变化,也满足了金属艺术对新的艺术表现语言的需求。
超声波金属焊接(UMW)可用于相同或者不同金属材料的焊接,特别适用于具有延展性的有色金属,有着广泛的工业应用,包括电子、电气、汽车和航空航天工业。与熔焊工艺相比,例如激光和脉冲电弧焊接,UMW避免脆性金属化合物的形成,成功解决对多层高导电性和高反射性材料的焊接。另外,熔焊工艺还存在金属飞溅、孔隙和烧穿问题,而且焊接时通常要保护气体去除氧气来保证焊接质量。
UWM温度通常仅为本体材料熔点的0.3-0.5倍,因此不存在上述熔焊工艺的任何质量问题。UMW技术适用于铝、镍、铜、金和银等有色金属材料。UMW不适合硬材料,例如黑色合金和较厚的有色金属。
版权所有©2025 产品网