




焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。除了在工厂中使用外,焊接还可以在多种环境下进行,如野外、水下和太空。无论在何处,焊接都可能给操作者带来***,所以在进行焊接时必须采取适当的防护措施。焊接给***可能造成的伤害包扩、触电、视力损害、吸入有***体、紫外线照射过度等。焊接技术的发展日新月异,激光焊接和电子束焊接被开发出来。今天,焊接机器人在工业生产中得到了广泛的应用。研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,并进一步提高焊接质量。陶瓷与金属的焊接中的陶瓷基本上指的是人工将各种金属、氧、氮、碳等合成的新型陶瓷。其具有高强度、耐高温、耐磨损、耐腐蚀、超硬度等特性,而得到广泛应用;常用的有氧化铝、氮化硅、氧化锆陶瓷等。
陶瓷与金属焊接的难点
1.陶瓷的线膨胀系数小,而金属的线膨胀系数相对很大,导致接易开裂。一般要很好处理金属中间层的热应力问题。
2.陶瓷本身的热导率低,耐热冲击能力弱。焊接时尽可能减小焊接部位及周围的温度梯度,焊后控制冷却速度
3.分陶瓷导电性差,甚至不导电,很难用电焊的方法。为此需采取特殊的工艺措施。
4.由于陶瓷材料具有稳定的电子配位,使得金属与陶瓷连接不太可能。需对陶瓷金属化处理或进行活性钎料钎焊。
5.由于陶瓷材料多为共价晶体,不易产生变形,经常发生脆性断裂。目前大多利用中间层降低焊接温度,间接扩散法进行焊接。
6.陶瓷与金属焊接的结构设计与普通焊接有所区别,通常分为平封结构、套封结构、针封结构和对封结构,其中套封结构效果好,这些接头结构制作要求都很高。
版权所有©2025 产品网