三维重建的步骤
(1) 图像获取:在进行图像处理之前,先要用摄像机获取三维物体的二维图像。光照条件、相机的几何特性等对后续的图像处理造成很大的影响。
(2)摄像机标定:通过摄像机标定来建立有效的成像模型,求解出摄像机的内外参数,这样就可以结合图像的匹配结果得到空间中的三维点坐标,从而达到进行三维重建的目的。
(3)特征提取:特征主要包括特征点、特征线和区域。大多数情况下都是以特征点为匹配基元,特征点以何种形式提取与用何种匹配策略紧密联系。因此在进行特征点的提取时需要先确定用哪种匹配方法。
主动式三维重建技术之三角测距法
三角测距法是一种非接触式的测距方法,以三角测量原理为基础。红外设备以一定的角度向物体投射红外线,光遇到物体后发生反射并被CCD(Charge-coupled Device,电荷耦合元件)图像传感器所检测。随着目标物体的移动,此时获取的反射光线也会产生相应的偏移值。根据发射角度、偏移距离、中心矩值和位置关系,便能计算出发射qi到物体之间的距离。三角测距法在测量、地形勘探等领域中应用广泛。
3D建模的原理
3D建模的过程实际上是一个三维重建过程,这个过程包括点云数据预处理、分割、三角网格化、网格渲染。
由于激光扫描获取的数据中常常伴有杂点或噪声,影响了后续的处理,因此为了获取完整的模型,需要对点云数据进行一定的预处理,常用的方法有滤波去噪、数据精简、数据插补等。
分割是指将整个点云聚类为多个点云,每个点云对应***的物体对象。分割算法大体上是先选定一个点,利用kd树计算以该点为中心的球,球内的点都属于该物体,球的半径设为一个阈值,之后遍历该物体的其他点都这么处理,会将点云分割成一个一个的物体。
为了便于后续的网格渲染,需要提前将点云进行三角网格化,采用的算法通常是凸包或凹包算法。
以上几步基本上已经得出了点云的空间拓扑结构,要得到逼真的物体,还需要网格渲染。网格渲染主要为纹理映射,就是将数码相机中的图像望网格上贴。
经过以上几步就完成了整个3D建模。
版权所有©2024 产品网