主要研究方向如下:
1. 智能结构系统
2. 智能化仪器及机械
3. 电子信息技术及应用
4. 光电技术及应用
5. 检测与控制技术
6. 计算机辅助设计与测试技术
精密仪器及机械7. 智能微机电系统技术
8. 微传感器技术及应用
9. 环境工程与地理信息技术
10 .智能文字图像识别技术及应用
11. 光电检测技术及智能化仪器
12. 微型机器人技术
13. 电子CAD技术
14. 机器人视觉与触觉
15. 动态检测技术及信号处理
16. 智能传感器技术及应用
17. 精密测量与智能化仪器
18. 虚拟仪器、网络仪器及软件无线电技术
19. 智能信息处理技术
20. 虚拟数学化家庭技术
21. 信息管理系统设计与集成技术
22. 企业间电子商务实用技术
23. ***生物识别技术及系统
24. 通信技术与微系统
精密机械技术是一个大学***课程,培养掌握精密机械与仪器的基础理论和***知识,事精密仪器与机械的设计制造,以及设备的测量控制和维护管理的技术应用性专门人才。
精密机械加工是一种用加工机械对工件的外形尺寸或性能进行改变的过程。按被加工的工件处于的温度状态﹐分为冷加工和热加工。一般在常温下加工,并且不引起工件的化学或物相变化﹐称冷加工。一般在高于或低于常温状态的加工﹐会引起工件的化学或物相变化﹐称热加工。冷加工按加工方式的差别可分为切削加工和压力加工。热加工常见有热处理﹐锻造﹐铸造和焊接。
精密和超精密加工时现代机械加工制造技术的一个重要组成部分,是衡量一个***高科技制造业水平高低的重要指标之一。20世纪60年代以来,随着计算机及信息技术的发展,对制造技术提出了更高的要求,不仅要求获得极高的尺寸、形位精度,而且要求获得极高的表面质量。正是在这样的市场需求下,超精密加工技术得到了迅速的发展,各种工艺、新方法不断涌现。CNC技术、材料技术、激光技术以及CAD技术等现代的科技成果,是现代***机械加工技术的重要组成部分。金刚石刀具切削较硬的材料时磨损较快,如切削黑色金属时磨损速度比切削铜快104倍,而且加工出的工件的表面粗糙度和 几何形状精度均不理想。 超精密磨削 但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相***要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷。 超精密磨削 用修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。
版权所有©2025 产品网