然而,到目前为止,激光工艺的加工速度仅能达到50cm2/秒。对于52Ah电池(面积21×24cm的典型涂布速度为30m/min,需要大约10cm2/s的激光干燥速度。因此,必须使用高功率激光器并且进一步升级工艺和优化工艺。增加负极复合涂层和集流体之间粘附力将会提升电极机械稳定性。激光技术可用于锂离子电池阳极(如石墨)和阴极(如LFP)的干燥,10nm波长的光纤激光器(大平均功率为450W)主要干燥实验装置。实验证明,通过激光和传统烘箱工艺干燥的电极的电化学性能残留水分和电极形态几乎相同。剥离强度测试可以得出结论,对于两种类型的电极,涂层对箔的粘附力没有差异。激光辐射直接把湿涂层溶剂干燥,环境热损失可以很小。
激光切割管材时,管材自身的特性对加工过程也会产生很大的影响。例如圆管管径的大小对加工质量有着明显的影响,通过对激光切割薄壁无缝钢管的研究发现,激光切割管材设备在各项工艺参数保持不变的情况下,管径不断增加切缝宽度也会不断增加。
切割非金属和部分金属管材时,可以使用压缩空气或者惰性气体(如氮气)作为辅助气体,而对于大多数金属管材则可以使用活性气体(如氧气)。在确定辅助气体的种类之后,确定辅助气体的压力大小也显得极为重要。当以较高的速度切割管壁厚度较小的管材时,则应提高辅助气体的压力,以防止切口出现挂渣;当切割管壁厚度较大或者切割速度较慢时,应适当降低辅助气体的压力,以防止出现管材割不穿或者割不断。
在激光切割管材时,光束焦点所处的位置也十分重要。切割时焦点位置一般在切割管件的表面位置,当焦点处于较好位置时,割缝小,切割,同时获得的切割效果也好。
管材切割存在着诸多不便,而国内传统的切割方法虽然也能达到应用效果,但是加工效率低下、加工效果较差,因此将管材切割与激光技术相结合,会使管材切割领域有着更加广阔的发展前景。激光切割管材具有切口宽度窄、热影响区小、切割速度快、柔性好、切口光洁及无工具磨损等诸多优点。随着数控激光割管机的出现与发展,对于空间自由曲面和曲线的多种加工工艺的发展更能展现其的一面。激光切割管材时,不仅要求激光光斑相对于工件在三维空间按一定的轨迹运动,同时要求在整个加工过程中,激光光轴始终垂直于要切割管材的加工表面。对于可以进行自动调焦的数控光纤激光切,其喷嘴可以通过自动测量和控制系统对工件表面进行自动跟踪。生产实践表明,管材切割的关键在于大程度的消除切割质量缺陷,从而满足管材的加工要求。对于复杂的管材进行穿孔、开槽、切边或侧凹等加工时,激光切割加工不仅比传统的加工方法更加快捷,而且能够极大的保证加工质量。