尤其是在高充电/放电速率下,在电极靠近集流体的部分锂离子浓度有限,并且形成沿膜厚度的锂浓度梯度。通过激光烧蚀或修饰制造的电极,可以形成3D结构厚电极的电池。激光处理结构化电极明显提高了循环容量保持率,并且可以实现电池级别的功率密度和能量密度的提高,原理方法如图6所示。在电极上直接刻蚀竖直孔道,可以降低电极的孔隙迂曲度,提高有效锂离子扩散系数,从而提高电池的功率性能。
Sikorsky Aircraft公司进行了一些测试,以研究激光切割边缘与连接处小孔的疲劳特性之间的关系。在进行激光边缘测试时,技术人员使用了工厂中典型的激光切割操作来加工7075-T6复合金属板。技术人员在不同的应力级别对样品进行了测试,R值保持在+0.1。选择+0.1是由机身结构疲劳系数的临界值决定的。 铆合结构(图3)的疲劳性能是由Sikorsky公司的测试数据和发布在其他资源中的数据来确定的。如图4所示,在整个过程中,激光切口边缘比铆合结构承受更大的应力。整个测试包括了持久力以及塑性形变测试,技术人员发现激光边缘并不是整个过程的关键因素。虽然,该测试只是一个开始,但是它表明激光技术可以应用在机身金属板的切割中。
这些形式的管材加工如果使用传统的加工方法,不但加工效率低下,而且难以达到理想的加工要求,有的甚至无法加工。生产实践表明,管材切割的关键在于大程度的消除切割质量缺陷,从而满足管材的加工要求。对于复杂的管材进行穿孔、开槽、切边或侧凹等加工时,管材激光切割系统能够极大的保证加工质量。管材除了需要割断以外,有的还需要其他形式的加工,如:用于装饰和灯具的花纹切割,螺旋线、正弦、余弦线切割,打标等。