而LFP在室温和更高温度下可能存在几种不同的相,如阴极中的橄榄石LiFePO4可能氧化形成α-Fe2O3或可能发生微观结构改性形成γ-Li3Fe2(PO退火过程可以改善电极涂层的微观结构,激光退火可以局部施加在所需的电极材料上,广泛应用于非晶半导体材料的结晶,如非晶硅。也可以成为控制阴极涂层中结晶相,例如LiCoO2和LiMn2O4涂层的晶粒尺寸可以通过退火时间来控制。
等离子切割适用于各种金属材料的切割,以中厚板切割为主,碳钢,不锈钢,铝板,铜板。激光切割主要以中薄板为主,切割材料相对广泛,有色金属高反材料(不锈钢铝板铜板)切割成本相对偏高。等离子切割在切割中厚板的过程中,可以达到非常高的切割速度,5-30mm板材,速度约5-5mm/min,割缝窄,热影响区小,变形小。等离子切割是以空气氧气或氮气作为工作气体,利用高温等离子电弧的热量使工件切口处的金属局部熔化和蒸发,并借助高速等离子流的动量排除熔融金属以形成割缝的一种加工方法。激光切割是由激光器产生的激光束,通过一系列反射镜的传输,由聚焦镜聚焦到工件表面,在焦点处产生局部高温,使工件的被加热点瞬间熔化或汽化形成割缝。同时在切割的过程中加以气体将割缝处的熔渣吹出,终达到加工的目的。
疲劳断裂通常发生在应力集中的地方,如零件的边缘,几何形状变化处,或者接合处。薄板金属制成的机身零件有很多不同的接合方式,绝大多数的疲劳裂痕发生在接合处。如果激光没有被用于切割接合处的小孔,那么激光主要就用于零件的边缘切割。对于其他的效应,可以采用易损坏的连接位置来说明与连接处相比,激光切割带来的微裂痕并非主要的损坏部位。这样,我们就能得出结论:如果一个零件有可能在连接处断裂,那么激光切割技术不会进一步损坏零件的疲劳特性。
在加工过程中首先应该保证管材零件的割断,以获得所需长度的管材毛坯。国内传统的管材切割方法难以满足大批量生产的需要,而且这些传统加工方法加工出来的管材零件,切断面加工质量普遍不佳,有的甚至产生变形和压塌等加工缺陷。管材除了需要割断以外,有的还需要其他形式的加工,如:用于装饰和灯具的花纹切割,螺旋线、正弦、余弦线切割,打标等。这些形式的管材加工如果使用传统的加工方法,不但加工效率低下,而且难以达到理想的加工要求,有的甚至无法加工。
利用激光切割管材(包括正切、斜切、成形切割等)切口宽度一般为0.1~0.3mm,切割的位置和温度都能的控制,更加有利于实现生产的自动化和智能化,切割效率相较传统加工方式可提高8~20倍,加工费用降低70%~90%,可节省15% ~30%的材料损耗,而且激光切割的噪声小,对环境影响也较小。传统加工方式需要多道连续工序来完成加工的零件可以通过激光切割在同一台设备上实现。随着设备性能的不断完善以及加工工艺的不断改进,利用激光对管材进行高质量切割是可以实现的。