尤其是在高充电/放电速率下,在电极靠近集流体的部分锂离子浓度有限,并且形成沿膜厚度的锂浓度梯度。通过激光烧蚀或修饰制造的电极,可以形成3D结构厚电极的电池。激光处理结构化电极明显提高了循环容量保持率,并且可以实现电池级别的功率密度和能量密度的提高,原理方法如图6所示。在电极上直接刻蚀竖直孔道,可以降低电极的孔隙迂曲度,提高有效锂离子扩散系数,从而提高电池的功率性能。
新机器在实际生产中的性能表现远远超过预期。有时切割速度甚至可以达到原来的三倍,平均值也能达到2倍。切缝质量与原来相当,但整体切割速度更快,质量也更均一。正如所预料的那样,新机器的运转成本也较之前有所下降。因为光纤激光器为固态激光器,电光转换效率更高,负载从原来的37千瓦降至16千瓦,仅为原来的一半略多。此外,新机器的切割速度是原来的两倍。
等离子切割适用于各种金属材料的切割,以中厚板切割为主,碳钢,不锈钢,铝板,铜板。激光切割主要以中薄板为主,切割材料相对广泛,有色金属高反材料(不锈钢铝板铜板)切割成本相对偏高。等离子切割在切割中厚板的过程中,可以达到非常高的切割速度,5-30mm板材,速度约5-5mm/min,割缝窄,热影响区小,变形小。等离子切割是以空气氧气或氮气作为工作气体,利用高温等离子电弧的热量使工件切口处的金属局部熔化和蒸发,并借助高速等离子流的动量排除熔融金属以形成割缝的一种加工方法。激光切割是由激光器产生的激光束,通过一系列反射镜的传输,由聚焦镜聚焦到工件表面,在焦点处产生局部高温,使工件的被加热点瞬间熔化或汽化形成割缝。同时在切割的过程中加以气体将割缝处的熔渣吹出,终达到加工的目的。
疲劳断裂通常发生在应力集中的地方,如零件的边缘,几何形状变化处,或者接合处。薄板金属制成的机身零件有很多不同的接合方式,绝大多数的疲劳裂痕发生在接合处。如果激光没有被用于切割接合处的小孔,那么激光主要就用于零件的边缘切割。对于其他的效应,可以采用易损坏的连接位置来说明与连接处相比,激光切割带来的微裂痕并非主要的损坏部位。这样,我们就能得出结论:如果一个零件有可能在连接处断裂,那么激光切割技术不会进一步损坏零件的疲劳特性。