尤其是在高充电/放电速率下,在电极靠近集流体的部分锂离子浓度有限,并且形成沿膜厚度的锂浓度梯度。通过激光烧蚀或修饰制造的电极,可以形成3D结构厚电极的电池。激光处理结构化电极明显提高了循环容量保持率,并且可以实现电池级别的功率密度和能量密度的提高,原理方法如图6所示。在电极上直接刻蚀竖直孔道,可以降低电极的孔隙迂曲度,提高有效锂离子扩散系数,从而提高电池的功率性能。

铝板之前一直是激光切割的难点之一,像铝板这种高反材料,对激光的吸收率低,因此激光切割铝板比较困难,但是因其加工需求比较广泛,也让我们不得不去思考解决用激光快速安全的切割铝板。像铜板、铝板等高反材料,激光设备是可进行切割加工的。激光切割铝板在可以通过一些手段进行降低困难进行切割,比如将铝材表面涂黑,这样就降低了铝板的反射程度。铝板切割困难的另一个原因则是激光机的参数不好调,和普通的金属材料相比其切割工艺比较难把握,切口比较粗糙且容易挂渣。

所以研究激光光束与切割管材的自动垂直功能也是管材激光切割的重要技术内容之一。为了保证激光切割管材的切割质量,可以通过自动测量和控制装置使焦点相对工件表面的垂直方向不变,这是激光切割管材的关键。目前,我们通过对激光焦点位置的控制与激光加工系统直线轴(X-Y-Z )的一体化,使激光切的运动更加轻巧灵活,而且对焦点的位置都能了如指掌,避免了切在加工过程中与切割管材或者其他物件发生碰撞。