基于热载荷优化修正的电主轴热特性分
电主轴作为数控机床重要功能部件,其设计应用水平直接影响数控机床的性能。近年来,电主轴零部件设计、制造和装配等技术的不断进步已经很大程度上提高了电主轴的性能,但内部电机、轴承等部件在高速运转中产生的热量却无法得到***,引起主轴轴承、转轴等热膨胀,影响数控机床性能。因此,建立合理的热动态模型以便更加合理地分析电主轴内部电机/轴承等部件的热传导及温度分布等情况具有重要意义。
电主轴热态特性
随着我国装备制造业对高精加工的需求提升,电主轴技术得到了飞速发展。然而随之产生的如主轴热态特性、主轴的发热散热和主轴运转的动平衡等问题成为亟待解决的问题。
电主轴结构紧凑,运转速率较高,主轴在运行过程中会产生大量热量,然而这些热量难以得到及时散发,随着电主轴持续运行,热量的不断积累对主轴的轴向变形产生较大影响,电主轴的加工精度得不到保证。针对上述问题,分析电主轴热态特性,探讨不同冷却系统性能,确定一种冷却效果好的冷却方式十分必要。
为适应新的加工要求,电主轴在结构、转速、扭矩等性能上有较大改变。通常,将电主轴前后轴承发热和电机发热作为电主轴的主要热源。轴承发热主要形式是摩擦生热,电机发热的主要形式为电机工作过程中产生的机械损耗、铜损耗和铁损耗等功率损耗。
电机的主轴机械振动状态,指的是对主轴整体机械状态实现评估的过程,其中包含径向和轴向振动。电机主轴如果振动状态差,则会使轴承磨损严重,令主轴严重发热,进而导致加工精度下降,表面加工质量降低。
主轴的轴承包络状态指的是对轴承状态评价的指标。利用低频率、中频率以及高频率的信号对轴承进行检测以测定其磨损或是损害程度及损害位置。检测出现低频率信号则表示轴承的外圈出现磨损状况,中频率信号则表示轴承的滚道面出现磨损状况,高频率信号则表示单个滚珠出现磨损状况。
版权所有©2025 产品网