以上特征峰表明CD-CHOL与PAA-Azo在气液界面上通过主客体作用形成复合组装膜。图4CD-CHOL多层LB膜的红外光谱Fig.进而,对CD-CHOL多层LB膜进行XPS表征,如图5所示。图5CD-CHOL多层LB膜的XPS数据以及C1s分峰5(a)是CD-CHOL分别在纯水亚相、PAA-Azo亚相的多层膜的XPS数据,特征峰C1s、O1s、N1s的相对强度均有所不同。
其中薄膜中N元素的相对含量由纯水亚相的1.06%增加至PAA-Azo亚相的3.64%,归因于CD-CHOL/PAA-Azo复合膜中PAA-Azo分子的N元素的增量。此外,将两种薄膜的C1s特征峰进行分峰考察不同化学价态的碳元素的相对含量,如图5(b)和5(c)所示。位于284.8eV处的峰归属于C—C,CC以及C—H键,287.2eV处的峰归属于CO键。可以清楚看出,CD-CHOL/PAA-Azo复合膜的C—C与CO基团的相对含量均相比CD-CHOL水相膜中有所增加,达到76.2%以及1.5%

当硅砂粒度控制在150~230目时,熔制时间虽比100~150目的样品短,残留未熔物较少,但微气泡大幅增加,澄清时间大幅延长,玻璃均匀性也比100~150目的样品差。因此,对高应变点玻璃的熔制而言,100~150目的硅砂更有利于制备出高质量的高应变点玻璃基板。图7不同粒度硅砂配合料的气泡个澄清效果的影响-数控滚圆机滚弧机折弯机张家港倒角机液压滚圆机滚弧机折弯机倒角机