1. 3D几何的表达:现在的基于点和三角网格的表达,或者基于NURBS曲面表达的3D形状是适合于数控加工(减材制造)的;我们认为,隐式曲面在增材制造方面具有系列良好的优点,切片计算快,几何计算简单等。我们正在研究基于隐式曲面的几何表达用于3D打印的广泛应用。 2. 组合材料:材料的不同组合能得到不同物理特性的物体,组合优化也是是几何的空间分布优化;不同的组合材料、功能材料、梯度材料的设计与优化,使用多重材料混合打印是个值得探索的方向。
先来看看我们所熟悉的扫描仪。在扫描仪的技术参数中,我们可以找到一个词叫“精度”,通常小于15微米,拥有更高精度的扫描仪可以达到7微米乃至5微米,很直观。然而在3D打印机的参数中却几乎难觅“精度”的踪影。各个厂家各说其词,于是乎就有了让消费者摸不着头脑的各种说法。“我们精度75微米”,“我的更高,达到62微米”,“我的精度小可以10微米!” 纵观这类说法,其实都是在偷换概念而已。
二是印刷速度。
印刷速度是家用与工业3D打印机之间的另一个重要区别,由于家用机器成本的限制,多选用16位和32位芯片作为主控芯片,数据处理速度与64位CPU相比,FDM上由于精度的原因,两者的差别不大,但是SLA技术中,前者的扫描速度高可达1m/秒,后者可达7m-15m/秒。
三、印花支座的设计和脱模质量。
在区分家用和工业3D打印机中,打印支承和打印实体可分参数打印的设计为重要。因为工业机器是应用于实际生产领域,对终打印的效果有很高的可控性标准,不管是FDM还是SLA设备,对于打印过程中的支撑点和实体都是无法区分的,因此对支撑点的剥离是一种特别不可控制的因素,通常会导致剥离失败,损坏实体。工业机器从根本上解决了这个问题。