3. 材料组合。多喷头的3D打印机能够对多种材料进行组合打印。通过材料的堆叠和组合,打印的物品具有与单一材料所不同的物理和力学的特性。因此,通过不同材料的组合,可以产生性能不同的“新的材料”。这个优势提供给了我们利用控制材料的分布来控制物品的物理、力学及结构的特性,从而能产生多样化的物品,增加产品的灵活性。
4. 三维印刷工艺(3DP):工作原理类似于喷墨打印机,与SLS工艺也有着类似的地方,采用的都是粉末状的材料,如陶瓷、金属、塑料,但与其不同的是3DP使用的粉末并不是通过激光烧结粘合在一起的,而是通过喷头喷射粘合剂将工件的截面“打印”出来并一层层堆积成型的。 5. 熔融沉积成型工艺(FDM):将丝状的热熔性材料(通常为ABS或PLA材料)进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来,熔融的丝材被挤出后随即会和前一层材料粘合在一起。一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。这是常见的3D打印机,现在价格只要几千元,也是进入家庭和个人工作室(创客)多的3D打印设备。也称为桌面型3D打印机。

3D打印技术近年来发展很快,可以预见,3D打印在智能制造、中国制造2025与工业4.0、云制造等领域会发挥着非常重要的作用。未来在各个行业都有着广阔的应用,网上的报道很多,在此不详述。
从科研的角度来看,3D打印中的几何设计与优化仍有许多新的问题和新的方向值得去探索。笔者这里列举几个我们正在思考和从事研究的问题和方向,以供大家探讨交流。