T4 RNA Ligase主要用于RNA和RNA之间的连接,连接时需要5'磷酸基团和3'羟基的存在。不仅可以进行RNA分子间的连接,也可以进行RNA分子(***短8个碱基)的环化连接。
T4 RNA Ligase可以用于RNA和单核苷酸之间的连接,单核苷酸必须为5'和3'均磷酸化的形式,此时常用于RNA的3'末端标记。
T4 RNA Ligase也可以用于DNA和RNA之间的连接。当DNA提供5'磷酸基团,RNA提供3'羟基时,连接效率较高;当DNA提供3'羟基,RNA提供5'磷酸基团时,连接效率非常低。
T4 RNA Ligase也可以用于DNA和DNA之间的连接,但连接效率非常低。主要用于DNA的环化连接,例如5' RACE中的cDNA环化。DNA和DNA之间的连接尽管可以进行,但比较困难。
当DNA聚合酶 III沿着滞后链模板移动时,由特异的引发酶催化合成的RNA引物即可以由DNA聚合酶 III所延伸,合成DNA。当合成的DNA链到达前一次合成的冈崎片段的位置时,滞后链模板及刚合成的冈崎片段从DNA聚合酶 III上释放出来。由于copy叉继续向前运动,便又产生了一段单链的滞后链模板,它重新环绕DNA聚合酶 III,通过DNA聚合酶III开始合成新的滞后链冈崎片段。通过这种机制,前导链的合成不会超过滞后链太多,这样引发体在DNA链上和DNA聚合酶 III以同一速度移动。在copy叉附近,形成了以DNA聚合酶 III二聚体、引发体和解旋酶构成的类似核糖体大小的以物理方式结合成的复合体,称为DNA copy体。copy体在DNA前导链模板和滞后链模板上移动时便合成了连续的DNA前导链,以及由许多冈崎片段组成的滞后链。当冈崎片段形成后,DNA聚合酶I通过其 5'→3'外切酶活性切除冈崎片段上的RNA引物,并利用后一个冈崎片段作为引物由 5'→3'合成DNA填补缺口。***后由DNA连接酶将冈崎片段连接起来,形成完整的DNA滞后链。
置换合成法。该方法利用链在反转录酶作用下产生的DNA RNA杂交链不用碱变性,而是在dNTP存在下。利用RNA酶H在杂交链的mRNA链上造成切口和缺口。从而产生一系列RNA引物,使之成为合成第二链的引物。在大肠DNA聚合酶工的作用下合成第二链。该反应有3个主要优点:①非常有效;②直接利用链反应产物,无须进一步处理和纯化;③不必使用S1核酸酶来切割双链cDNA中的单链发夹环。
以Riboclone M-MLV CDNA合成技术为例。Riboclone M—MLV cDNA合成系统采用M—MLV反转录酶的RNase H缺失突变株取代AMV反转录酶,使合成的cDNA更长。该系统的链合成使用M-MLV反转录酶,cDNA第二链合成采用置换合成法,采用RNaseH和DNA聚合酶I进行置换合成,用T4 DNA聚合酶切去单链末端,方法简便易行。