PCR的创建
Khorana (1971)等***早提出核酸体外扩增的设想:“经DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可合成tRNA***。”但由于当时***序列分析方法尚未成熟,热稳定DNA聚合酶尚未报道以及引物合成的困难,这种想法似乎没有实际意义。加上分子克1隆技术的出现提供了一种克1隆和扩增***的途径,所以Khorana的设想被人们遗忘了。
1983年4月的一个星期五晚上,他开车去乡下别墅的路上,猛然闪现出“多聚酶链式反应”的想法。
1983年12月,Mullis用同位素标记法看到了10个循环后的49 bp长度的第yi个PCR片段;
1985年,Kary Mullis在Cetus公司工作期间,发明了PCR。Mullis要合成DNA引物来进行测序工作,却常为没有足够多的模板DNA而烦恼。
1985年10月25日申请了PCR的专1利,
1987年7月28日批准(专1利号4,683,202 ),Mullis是第yi个发明人;
1985年12月20日在Science杂志上发表了第yi篇PCR的学术论1文,Mullis是共同作者;
1986年5月,Mullis在冷泉港实验室做专题报告,全世界从此开始学习PCR的方法。
PCR原理
DNA的半保留copy是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复1制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定***的体外copy。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。
耐热DNA聚合酶-Taq酶的发现对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。
PCR技术的基本原理
PCR技术是在模板DNA、引物和四种dNTP等存在的条件下.依赖于DNA聚合酶(T aq酶)的酶.促合成反应。其具体反应分三步:变性、退火、聚合。以上三步为一个循环,每一 循环的产物DNA又可以作为下一个循环模板,数小时后,介于两个引物之间的目的DNA得到了大量的copy,经25~ 30次循环DNA数量可达2x1067拷贝数。
锚定PCR(Anchored PCR. APCR技术.
用酶法在一通用引物反转录cDNA3'-末端加上一段已知序列,然后以此序列为引物结合位点对该cDNA进行扩增,称为APCR.应用:它可用于扩增未知或全知序列,如未知cDNA的制备及低丰度cDNA文库的构建。
版权所有©2025 产品网