20世纪70年代以来,人们通过酶***染色法,利用胰蛋白酶对肥大细胞(MC)进行染色,发现MC能够被染色,说明MC中一定含有胰蛋白酶活性物质。1981年Schwartz等进一步纯化这种酶后发现,它是由MC释放的,其活性90%以上来自一种酶,故命名为类胰蛋白酶。Miller等在1989年克1隆了第yi种类胰蛋白酶cDNA,其后又有几种类胰蛋白酶被克1隆。类胰蛋白酶在cDNA和蛋白水平被分为三类:α、β、γ,其中β含量***高。每个类胰蛋白酶***均含有6个外显子和5个内含子,编码30个氨基酸的前导链和245个氨基酸的活性的部位。通过氨基酸序列推断,α-类胰蛋白酶和β-类胰蛋白酶有90%的同源性。其主要区别在于β-类胰蛋白酶的-3位和215位氨基酸分别为精氨酸和甘氨酸,而α-类胰蛋白酶则分别为谷氨酰胺和天冬氨酸,两者的结构区别决定了它们活性差异。
原子数由m个氨基酸,n条肽链组成的蛋白质分子,至少含有n个—COOH,至少含有n个—NH2,肽键m-n个,O原子m+n个。分子质量设氨基酸的平均相对分子质量为a,含b个二硫键,蛋白质的相对分子质量=ma-18(m-n)-2b***控制***中的核苷酸 6信使RNA中的核苷酸 3蛋白质中氨基酸 1。蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)、S(硫)、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。这些元素在蛋白质中的组成百分比约为:碳50% 氢7% 氧23% 氮16% 硫0~3% 其他微量。
(1)一切蛋白质都含氮元素,且各种蛋白质的含氮量很接近,均为16%;
(2)蛋白质系数:任何生物样品中每1g元氮的存在,就表示大约有100/16=6.25g蛋白质的存在, 6.25常称为蛋白质常数。
整体结构蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。一级结构(primary structure):氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构,每种蛋白质都有而确切的氨基酸序列。二级结构(secondary structure):蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。蛋白质的二级结构主要依靠肽链中氨基酸残基亚氨基(-NH-)上的氢原子和羰基上的氧原子之间形成的氢键而实现的。三级结构(tertiary structure):在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的三级结构。肌红蛋白,血红蛋白等正是通过这种结构使其表面的空穴恰好容纳一个血红素分子。四级结构(quaternary structure):具有三级结构的多肽链按一定空间排列方式结合在一起形成的聚集体结构称为蛋白质的四级结构。如血红蛋白由4个具有三级结构的多肽链构成,其中两个是α-链,另两个是β-链,其四级结构近似椭球形状。
蛋白质在胃液消化酶的作用下,初步水解,在中完成整个消化吸收过程。氨基酸的吸收通过黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。在肠内被消化吸收的蛋白质,不仅来自于食物,也有肠黏膜细胞脱落和消化液的分泌等,每天有70g左右蛋白质进入消化系统,其中大部分被消化和重吸收。未被吸收的蛋白质由粪便排出体外。