IC反应器的优点主要有以下几点:(1)容积负荷率高,水力停留时间短。(2)基建***省,占地面积小。由于IC反应器的容积负荷率高,故对于处理相同COD总量的废水,其体积仅为普通UASB反应器的30-50%左右,降低了基建***。同时由于IC反应器具有很大的高径比,所以占地面积特别省,非常适用于一些占地面积紧张的厂矿企业采用。(3)节省能耗。由于IC反应器是以自身产生的沼气作为提升的动力实现混合液的内循环,不必另设水泵实现强制循环,故可节省能耗。(4)抗冲击负荷能力强。由于IC反应器实现了内循环,内循环液与进水在反应室充分混合,使原废水中的***物质得到充分稀释,大大降低了***程度,从而提高了反应器的耐冲击负荷的能力。(5)具有缓冲pH值变化的能力。IC反应器可充分利用循环回流的碱度,对pH起缓冲作用,使反应器内的pH值保持稳定,从而节省进水的投碱量,降低运行费用。(6)出水水质稳定。IC反应器相当于两级 UASB艺处理,下面一个的有机负荷率高,起“粗”处理作用,上面一个有机负荷率低,起“精” 处理作用,故比一般的单级处理的稳定性好,出水水质稳定。
化粪池污水处理厌氧滤罐生产商
一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:
(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。
(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、等产物产生。
(3)产阶段:在此阶段,上一步的产物进一步被转化成、碳酸、氢气以及新的细胞物质。
(4)产阶段:在这一阶段,、氢气、碳酸、甲酸和都被转化成、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程为重要的阶段和整个厌氧反应过程的限速阶段。
再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类***体类完成的。个阶段的反应速度很快,如果用莫诺方程来模拟个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。而第四个反应阶段通常很慢,同时也是为重要的反应过程,在前面几个阶段中,废水的中污染物质只是形态上发生变化,COD几乎没有什么去除,只是在第四个阶段中污染物质变成等气体,使废水中COD大幅度下降。同时在第四个阶段产生大量的碱度这与个阶段产生的有机酸相平衡,维持废水中的PH稳定,保证反应的连续进行。
回流系统:内部的回流是利用气提原理,因为在上部和下层的气室间存在着压力差。回流的比例是由产其量所决定的。
大部分有机物(BOD和COD)是在IC反应器下部的颗粒污泥膨胀床内降解为生物沼气的(CH4),沼气经由一部分分离器收集,通过气体升力携带水和污泥进入气体上升管,至位于IE反应器顶部的液气分离罐进行液气分离,水与污泥经过中心循环下降管流向反应器底部,形成内循环流。一级分离气的出流在第二级(上部)处理区得到后续处理,在此,大部分剩余的可降解的有机物(COD和BOD)得到进一步降解,所产生的沼气被二级分离器收集,出水通过溢流堰流出反应器。
内循环是基于气体上升原理,通过含气体的“上升管”和“下降管”介质密度的差别产生的,在此不需水泵实现这一内循环,内循环量(速度)通过上升管内沼气的含量,即进水中COD浓度的变化实现自我调节。该内循环功能使IE反应器具有较灵活的特点,比如:当进水COD负荷增加时,沼气产量增大,内循环管内气体上升力增大,经由下降管至下部的循环水进一步稀释了COD的浓度。反之,当进水COD负荷较小时,较少的沼气产量产生较小的气体上升力,使得较小的循环水流至反应器底部稀释进水COD浓度。由此可见,内循环特点可以保证在进水COD负荷波动的情况下,实现稳定的COD负荷自动调节.
厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是CH4和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。
上升到表面的污泥撞击三相反应器气体发射的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。
版权所有©2025 产品网