叶顶间隙对风机性能也有很大影响。由图5和图6可知,同为前吹,叶顶间隙由10mm减小为5mm后,风机全压明显增大,风机效率提升了2%;同为后吹,叶顶间隙由10mm减小为5mm后,风机全压提升同样明显,风机效率提升了3%。已有研究[6-8]表明,由于叶顶间隙的存在,压力面与吸力面存在压差,产生叶顶泄漏流,泄漏流与主流相互混合,影响风机内部流场以及气动性能。
地铁风机的一个基本要求是结构紧凑,占地面积小。从结构上解决风机反风的问题有两种方法。 旋转叶片法
如果将风机的动叶和静叶分别旋转约180o,则可以实现较的反风。只不过此时的动叶位于静叶的下风向,其效率要低于正风效率,而且风机叶片在叶根处的稠度(即实度)较大,叶片的旋转会造成相邻叶片间的干涉,因此不得不每隔一个叶片分两组进行旋转,这样才能完成反风动作。所以这种反风方法结构复杂,不容易实施。
(1)首先使风机电机电源断开(因此其转速会逐渐降低,直到停机),此时段约需 30s ,无需等待风机完全停机,即可执行以下步骤。
(2)启动风筒移动机构:首先接通该机构的控制电源,于是电机就带动气泵或液压泵工作,并缓慢驱动3个作动筒来压缩软连接风筒(同时反抗弹簧的拉力),并将活动通风筒向风机两侧移动,当移到预***置时自动停止,此时段约需2min 。
版权所有©2025 产品网