3 试验结果对比及分析
本文主要针对风机的全压特性和效率特性展开对比及分析,故对风机静压特性和气动噪声问题不做讨论。
3.1 不同安装角试验结果对比及分析
三种安装角下,叶顶间隙均为10mm,均为前吹试验。图3、图4 为不同安装角下风机的全压特性曲线与静压特性曲线对比图,图5为效率特性曲线对比图。其中Q代表风量,ptf代表全压,ηtf代表全压效率。
风机整体旋转法
仔细分析地铁风机的具体结构是十分有益的。地铁风机一般都是水平安置的,且都是单级的(一级动叶加一级静叶)电机内置。因此,其轴向长度很短,与其直径差不多,有的比直径还小。这样,就提供了一个契机:当需要反风时,只需将地铁风机整机(包括转子、机壳和电机)原地绕垂直于其旋转轴线的纵向对称轴旋转180°即可完成反风。这种操作并不需要额外的通道空间,且能保证风机在正向和反风时工作状态完全相同,因此也同样具有。
由于本技术的关键在于风机需绕其纵向对称轴旋转180°,因此与通常的风机不同,其机壳的两端不能与其前后通风道的风筒固定联接,而必须是能够密封的活动联接;的是采取端面密封的端面对接。
而为了保证橡胶密封圈的密封效果,必须得为其提供足够的压紧力,这种力可由作动筒靠气动或液压提供,但是作动筒由于长期处于工作状态会导致漏气或漏油。因此,可考虑采用预先设定的弹簧力压紧密封环来保证密封,而作动筒仅在需要移动活动通风筒时才使用。
4.2.1 活动通风筒移动距离的估计
是很方便的。活动通风筒与软连接风筒一起靠作动筒5 支撑并固连于固定风筒1上。
4.2.3 活动通风筒的移动
活动通风筒与软连接风筒向风机两侧的移动靠沿圆周均布的 3 个作动筒 5 执行,而作动筒是由一台电机驱动的液压泵驱动(未示出)。
工程隧道风机 开采隧道用风机 高速路隧道通风机 SDF公路隧道风机 变频隧道风机 三速隧道风机 铝合金叶片隧道风机 铝合金叶轮隧道风机 侧进风局部通风机 局部通风机 对旋式隧
版权所有©2025 产品网