伺服驱动器与变频器的对比
伺服驱动器与变频器的对比:目前,在工业应用上来说,速度控制和力矩控制的场合要求不是很高的一般用变频器,在有严格位置控制要求的场合中智能用交流伺服驱动器来实现,还有就是伺服的响应速度远远大于变频,有些对速度的精度和响应要求高的场合也有用交流伺服驱动器控制,也就是说,能用变频控制的运动的场合几乎都能用交流伺服驱动器取代。
交流伺服驱动器作为现代工业自动化与运动控制的支撑性技术之一,由于其高速控制精准、调速范围广、动态特性和效率较高,广泛应用于机床、印刷设备、包装设备、纺织设备、橡塑设备、电子半导体、风电/太阳能等新能源以及机器人、自动化生产线等领域。
但是,交流伺服驱动器发展了变频技术,交流伺服驱动器借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节。与变频器一样,也是将工频交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的交流电,波形类似于正余弦的脉动电。
伺服驱动器的选型步骤
伺服驱动器的选型步骤:1.需求分析。
确定转速、转矩、转速精度或***精度、安装尺寸、是否需要闭环、成本;
2.选择电机。
首先确定电机类型;然后根据转速、转矩、安装尺寸选择电机;
3.选择反馈元件
根据是否需要闭环,决定是否选用反馈元件,如编码器、测速机、旋变等;
根据转速精度或***精度选择反馈元件的类型及参数。
4.选择驱动器。
根据电机功率,和以上综合因素选择驱动器;
选择驱动器时,不仅需考虑和电机的匹配,还需考虑控制方式。选择适合自己控制器的控制方式,也很重要。主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。
伺服驱动器的基本功能
伺服驱动器的基本功能是电动机驱动和信号反馈。现在多数伺服驱动器具有***的控制系统,一般采用数字信号处理器、单片机、FPGA等作为主控芯片。控制系统输出的信号为数字信号,并且信号的电流较小,不能直接驱动电动机运动。
伺服驱动器还需要将数字信号转换为模拟信号,并且进行放大来驱动电动机运动。伺服驱动器内部集成了主控系统电路、基于功率器件组成的驱动电路、电流采集电路、霍尔传感器采集电路,以及过电压、过电流、温度检测等保护电路。
版权所有©2025 产品网