全息成像
由于人类的双眼是横向观察物体的,且观察角度略有差异,图像经视并排,两眼之间有6厘米左右的间隔,***的融合反射及视觉心理反应便产生了三维立体感。根据这个原理,可以将3D显示技术分为两种:一种是利用人眼的视差特性产生立体感;另一种则是在空间显示真实的3D立体影像,如基于全息影像技术的立体成像。全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。
全息成像分类(二)
反射式
为克服透射式全息显示图像无法利用普通白光(非相干光)再现的缺陷,人们又发展了反射式全息显示图像。将物体置于全息板的右侧,相干点光源从左方照射全息板。将直接照射至全息板平面上的光作为参考光;而将透过全息板(未经处理过的全息板是透明的)的光射向物体,再由物体反射回全息板的光作为物光,两束光干涉后便形成全息显示图像。由于记录时物光与参考光分别从全息板两侧入射,故全息板上的干涉条纹层大致与全息板平面平行。再现时,利用光源从左方照射全息板,全息板中的各条纹层宛如镜面一样对再现光产生出反射,在反射光中观看全息板便可在原物处观看到再现的图像。 [3] 制作反射式全息显示图像时,通常采用较普通透射式全息显示图像更厚的记录介质(厚约15μm的感光乳胶层)。因干涉条纹层基本上与全息板平面平行,介质层内形成多层干涉条纹层,即反射层,故全息板的衍射相当于三维光栅的衍射,必须满足布拉格(Bragg)衍射条件,即仅有某些具有特定波长及角度的光才能形成极大的衍射角。由于具有这种选择性,反射式全息显示图象便可用普通白光扩展光源再现。这是其一大优点,同时亦消除了激光的散斑效应。近年来,该类全息显示图像已广泛应用于小型装饰物的三维显示,并已实现商品化,市面上将其称为“激光宝石”。反射式全息显示图象还可用作壁挂式显示,但制作屏幕较大的反射式全息显示图像技术难度较大;另一缺陷是其景深不太大,距记录介质平面较远处的图像有点模糊不清。
利用白光点光源以共轭方式照射全息板,便会同时再现物像与缝隙的实像。由于全息显示图像的基本作用相当于光栅,在白光照射下具有色散的作用,故不同颜色的狭缝像分布于不同的方位。当人眼从缝隙像左方观看全息板时,通过不同颜色的缝隙像便可观看到该种颜色的物像。当人眼上下移动时,物象会产生出宛如彩虹一样的颜色变化,这也是此种全息显示图像名称的由来。
彩虹式全息显示图像技术的问世给全息显示注入了新的活力,众多研究者对其进行了不断的改进与发展,并在众多领域得到了应用。如将记录时的单缝变为多缝,可使同一角度观看的再现像具有与实物一样的彩色,或对黑白图像进行假彩色编码。
版权所有©2024 产品网