交通场景中车辆对象的实时检测是基于视频的交通监测系统中重要也是基本的步骤.是视频检测法的,检测的正确与否直接关系到智能交通系统决簧的正确性,兴趣区域(Rcpon Of Interestinl;,ROI)提取是对交通场景视频图像中的车辆进行粗分割.***识别系统将有可能是车辆的区域从复杂的交通场景中分割出来以便进行后续的检测与跟踪操作.对一个像素检测主要是利用了在视频图像序列中处于同一位置的像素信息,而不是仅仅利用一帧中该像素的周围像素信息,这主要是由视频图像的特点决定的.对ROI的提取主要有光流法、帧差法、背景差法等几类方法。
1、背景差法
背景差法的基本思想是先形成交通场景的背景图像,然后将待检酒图像与背景图像逐像素相减(理想情况下的差值图像中非零像素点就表示了运动物体),进而就可运用N值方法将运动物体从背景中分离出来。
在运动(光流)场确定之后,去除随机噪声及一些过小的运动,认为在检测时段内运动向量始终在一定范围内保持一致的那些区域属于一个物体,从而可以确定出各运动目标(车辆)在各个时刻的运动参数(速度,方向等).
基于车光流场分析进行跟踪的方法,可以很的计算出运动目标的速度,但是这种方法采用迭代的方法·计算时间较长,无法进行实时的跟踪,并且该方法只考虑利用光流散据来进行决策,所以受到被估算的光流场精度的限制.这些方法受到噪声的影响严重·而且·分割所得的运动对象的边缘精度不够.在运动不完全的情况下,则会产生分割结果不完整等问题。
另外,由于运动场并不是很可靠,因此通常在物体边界或纹理不突出区域产生错误,从而会对分割结果产生明显的影响,因此,由于各方面的限制,使得基于光流法的运动分割并不适合交通场景下的运动分析。
版权所有©2024 产品网