简易防静电型材工作台铝型材开模「重庆固尔美」
作者:重庆固尔美2021/11/11 11:20:22






技术丨铝型材6063氧化外观不良表面斑点阴阳色怎么改善?

生活水平的提高,铝合金门窗、铝合金幕墙的使用越来越普及,然而不少的铝合金在使用一段时间以后,表面出现形态各异的腐蚀缺陷,其中斑点腐蚀较为常见,严重影响铝型材的使用性能及装饰效果。

为了合理改善铝型材的表面质量,达到控制表面斑点腐蚀的目的,很有必要对斑点缺陷做深入细致的分析。本文以6063铝型材经阳极氧化后表面出现的斑点腐蚀为研究对象,分析斑点腐蚀的本质、成因及生成机理,探讨产生斑点腐蚀的关键因素。

1

斑点腐蚀的本质分析

  由所使用的6063铝型材成分可知,为了确保Mg元素充分形成强化相Mg2Si,一般在配制合金成分时人为的使Si元素适量过剩。因为随着Si含量的增加,合金的晶粒变细,热处理效果较好。但另一方面,Si的过剩也有面作用,使合金的塑性降低,耐蚀性变坏。

研究表明:过剩Si不仅能形成游离态的Si相,还会与基体形成α相(Al12Fe2Si)和β相(Al9Fe3Si2),这样在铝合金中存在游离态的Si相、α相(Al12Fe2Si)、β相(Al9Fe3Si2)等阴极相粒子和阳极相Mg2Si粒子。α相和β相对合金的腐蚀性能影响很大,尤其是β相能显著降低合金的腐蚀性能。

斑点处残留物的成分主要是游离Si相和AlFeSi相,同时发现氯元素在残留物处也发生了吸附,这说明Cl-参与了腐蚀过程。腐蚀区中锌元素含量较基体高得多,说明合金中的杂质元素锌也参与了腐蚀过程。

  阳极氧化工序中,阳极相Mg2Si是合金的点蚀源。在阳极氧化碱洗时,Mg2Si粒子优先溶解而形成蚀坑,其中镁溶解在溶液中而硅在铝合金上残留下来,当蚀坑聚集在晶粒上就会使该晶粒颜色发暗。在***中和工序中硅不易除去,故斑点腐蚀蚀坑底部硅含量较其他区域高。

2

斑点腐蚀的成因分析

  影响斑点腐蚀的主要因素有预处理过程中的碱洗温度、碱洗时间以及合金成分中的Zn、Fe、Si元素含量与合金的挤压状态等。在诸多因素中,挤压状态起着关键性的作用,它关系到对腐蚀性能有较大影响的Zn、Fe、Si等元素的分布,以及金属键间化合物等粒子的析出位置。

在较粗的挤压条纹区中,斑点腐蚀分布具有明显的方向性,因为这个区域挤压时阻力较大,应力多在此集中,该处金属的晶格发生严重畸变,成为局部高自由能区,在随后的再结晶过程中优先形核,为了降低界面能和处于稳定态,此处晶粒不仅异常长大,而且Mg2Si阳极相、游离Si、FeSiAl、FeAl3等阴极相优先析出,为后续的斑点腐蚀创造了条件。

  由于上述原因,在析出游离Si、FeSiAl、FeAl3等金属问化合物的晶界附近出现硅铁元素的贫乏区,此区近乎为纯铝,电位为负是阳极,它与金属间化合物(是阴极)构成了微电池,在腐蚀介质的作用下,微电池中阴极相(如游离Si、FeSiAl、FeAl3)周围的Si、Fe贫乏区(是阳极相)优先溶解,而Mg2Si也发生溶解,结果阳极相周围Al的溶解形成了带有残留物的腐蚀坑,阳极相溶解则形成没有残留物的腐蚀坑。

当腐蚀条件继续恶化(如温度上升、碱洗时间长等)的情况下,基体Al继续溶解,腐蚀坑向深的方向发展,于是表面形貌就表现为部分带有残留物的腐蚀坑和部分无残留物的腐蚀坑,由二者构成了前面所述的斑点腐蚀。

3

斑点腐蚀生成机理分析

  6063是Al-Mg-Si系合金,Mg2Si的时效强化相。为提高合金强度,生产中常使Si元素含量过剩,由过剩Si便形成了游离Si、FeSiAl相粒子。这些粒子在挤压工艺不当及热处理不规范的情况下,可能导致与FeAl3、Mg2Si粒子一起在晶界处偏聚(或偏析),这就构成了点蚀源。

根据腐蚀学理论,阴极质点周围的阳极铝会优先腐蚀,生成的Al3+向阴极扩散,而溶液中的OH-向阳极扩散,终在阴阳极的界面沉淀出白色絮状的Al(OH)3,干涸后在铝材的表面构成白点。即所谓的斑点腐蚀。相应的化学方程式如下:

Al→Al3++3e(阳极)

Al3++3OH-→Al(OH)3↓(阴极)

4

活性元素的影响

4.1

Zn元素的加速作用

  固溶在铝合金中的锌以“溶解-再沉积”的方式加速晶粒腐蚀,合金表面上沉积的锌或铁以及高电位脱溶物FeSiAl和游离硅等阴极性粒子能起到有效的阴极作用,加快溶解氧的还原过程,促进腐蚀不断扩展、加深。

  Zn元素碱洗时随Al的溶解而以Zn(OH)42-和Zn(OH)-3的形式溶于碱液中。又因为Zn的电位(-0.76V)较Al的电位(-1.67V)正,当碱液中Zn离子的浓度增至一定数值时,Zn就会选择性地沉积在腐蚀坑中的残留物上,所以会出现Zn元素偏高的异常现象。另一方面,由于Zn、Al二者的电位差较大,导致微电池中的腐蚀电流很大,阴极性粒子Fe、Si贫乏区(基本为纯铝)溶解较快,这种腐蚀终表现为斑点腐蚀。

4.2

Cl-的活化作用

  作为外部因素的Cl-对斑点腐蚀非常敏感,具有诱发、加***蚀的作用。研究结果发现,脱脂酸中的Cl-会在钝化膜缺陷处吸附,并穿透钝化膜吸附于基体上。

此处的铝元素由于被活化而迅速溶解,于是钝化膜被***,形成电偶电池结构,在酸性介质的作用下,局部腐蚀电流较大,此时Cl-与溶解的A13+发生如下络合反应:Al3++Cl-+H2O→AlOHCl++H+,使溶液的酸性进一步加强,腐蚀条件更加恶化。

当Cl-浓度时,络合反应向右进行,钝化膜上的活性点会大大增加,在随后的碱洗过程中优先溶解,从而出现较为严重的斑点腐蚀。

4.3

pH值的促进作用

  水洗水中的pH值小于2或者大于4时,很少发生斑点腐蚀。颜色发暗时的晶粒由***向黑色转变过程中,水洗槽中的pH值起到了一定的促进作用。

  当水洗水中pH>4时,铝型材表面形成的钝化膜比较完整、致密,H+、Cl-的吸附、活化、***作用大大减弱,故型材很少甚至没有腐蚀发生;当pH<2时,铝型材表面处于活性溶解状态,无钝化膜形成,所以也不会出现斑点腐蚀。

5

结论

  6063铝型材斑点腐蚀是因铝合金中阳极相Mg2Si的偏析、粗化引起的,而合金中杂质元素Zn及溶液中Cl-和pH值加速了斑点腐蚀的发生与发展。

应适当调整合金中的镁硅元素质量比,不宜使硅元素含量过高,并合理安排时效制度以防止Mg2Si粒子的偏聚,以免影响铝型材的腐蚀性能。

控制合金中微量元素Zn以及处理过程中溶液的Cl-浓度和pH值,减轻活性元素的面影响。

免责声明:本文内容转载自网络,由铝加网编辑整理,版权归原作者所有,转载目的在于传递更多信息,并不代表本公众号赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请来电或致函告之,我们将及时给予处理!




铝型材

重庆固尔美科技有限公司是国内出产工业铝型材的***厂家之一,产品已经过世界质量体系认证和产品认证的企业,是一家集研究设计开发制作销售效劳为一体的科技立异新式企业。固尔美科技分为六大板块:1模具设计开发2铝型材揉捏出产3工业结构及流水线 运送线设备开发装置 4铝制品深加工5熔铸氧化电泳静电 粉末 喷涂 6非标工业铝型材产品。

     工业铝型材揉捏出产已是固尔美科技的成熟产品,随着公司的开展,流水线 运送设备,工业结构是研制制作的精华,具有丰厚的研制出产经历,了解商场新需求,能满意客户特殊要求的特性产品和异型材产品 。

固尔美科技有限公司主导产品:

  1、流水线铝型材及各种装修揉捏型材。

  2、接受各种工业型材和特种型材的来样加工。

3、各种机械配件铝型材、电器配件铝型材、机床铝配件

4、铝模具开模型,型材揉捏各种类型标准出样

5、阳极氧化和喷涂各种型材以及配件

6、出产各种装置工程配件型材和铝条铝件铝管铝散热器

7、电机端盖铸件,冲压件,机床设备,动力机械等铝压铸件



硬质阳极氧化和一般阳极氧化的差异

硬质阳极氧化和一般阳极氧化的差异:

硬质氧化的氧化膜有50%浸透在铝合金内部,50%附着在铝合金表面,因而硬质氧化后产品外部标准变大,内孔变小。

(一)操作条件方面的差异:

1、温度不同:一般氧化18-22℃左右,有添加剂的能够到30℃,温度过高易呈现粉末或裂纹;硬质氧化一般在5℃以下,相对来说温度越低硬质越高。

2、浓度差异:一般氧化一般20%左右;硬质氧化一般在15%或更低。

3、电流/电压差异:一般氧化电流密度一般:1-1.5A/dm2;而硬质氧化:1.5-5A/dm2;一般氧化电压≤18V,硬质氧化有时高达120V。

(二)膜层功用方面的差异:

1、膜层厚度:一般氧化膜层厚度相对较薄;硬质氧化一般膜层厚度>15μm,过低达不到硬度≥300HV的要求。

2、表面情况:一般氧化表面较光滑,而硬质氧化表面较粗糙(微观,和基体表面粗糙度有关)。

3、孔隙率不同:一般氧化孔隙率高;而硬质氧化孔隙率低。

4、一般氧化基本是透明膜;硬质氧化由于膜厚,为不透明膜。

5、适用场合不同:一般氧化适用于装饰为主;而硬质氧化以功用为主,一般用于耐磨、耐电的场合。这些是咱们平常用的较多的功用方面的比较,有其他许多方面的差异。


商户名称:重庆固尔美科技有限公司

版权所有©2025 产品网